首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In response to water stress, Portulacaria afra (L.) Jacq. (Portulacaceae) shifts its photosynthetic carbon metabolism from the Calvin-Benson cycle for CO2 fixation (C3) photosynthesis or Crassulacean acid metabolism (CAM)-cycling, during which organic acids fluctuate with a C3-type of gas exchange, to CAM. During the CAM induction, various attributes of CAM appear, such as stomatal closure during the day, increase in diurnal fluctuation of organic acids, and an increase in phosphoenolpyruvate carboxylase activity. It was hypothesized that stomatal closure due to water stress may induce changes in internal CO2 concentration and that these changes in CO2 could be a factor in CAM induction. Experiments were conducted to test this hypothesis. Well-watered plants and plants from which water was withheld starting at the beginning of the experiment were subjected to low (40 ppm), normal (ca. 330 ppm), and high (950 ppm) CO2 during the day with normal concentrations of CO2 during the night for 16 days. In water-stressed and in well-watered plants, CAM induction as ascertained by fluctuation of total titratable acidity, fluctuation of malic acid, stomatal conductance, CO2 uptake, and phosphoenolpyruvate carboxylase activity, remained unaffected by low, normal, or high CO2 treatments. In well-watered plants, however, both low and high ambient concentrations of CO2 tended to reduce organic acid concentrations, low concentrations of CO2 reducing the organic acids more than high CO2. It was concluded that exposing the plants to the CO2 concentrations mentioned had no effect on inducing or reducing the induction of CAM and that the effect of water stress on CAM induction is probably mediated by its effects on biochemical components of leaf metabolism.  相似文献   

2.
The possibility that Crassulacean acid metabolism (CAM) is subject to long day photoperiodic control in Portulacaria afra (L.) Jacq., a facultative CAM plant, was studied. Periodic measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made on plants exposed to long and short day photoperiods. Results indicates that waterstressed P. afra had primarily nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation in either photoperiod. Mature leaf tissue from nonstressed plants under long days exhibited a moderate diurnal acid fluctuation and midday stomatal closure. Under short days, there was a reduced diurnal acid fluctuation in mature leaf tissue. Young leaf tissue taken from nonstressed plants did not utilize the CAM pathway under either photoperiod as indicated by daytime CO2 uptake, lack of diurnal acid fluctuation, and incomplete daytime stomatal closure.

The induction of CAM in P. afra appears to be related to the water status of the plant and the age of the leaf tissue. The photosynthetic metabolism of mature leaves may be partly under the control of water stress and of photoperiod, where CAM is favored under long days.

  相似文献   

3.
The kinetics of chlorophyll fluorescence were measured in Portulacaria afra (L.) Jacq. when the plants were functioning in either Crassulacean acid metabolism (CAM) or C3/CAM cycling (called cycling) modes, as determined by fluctuation in titratable acidity and gas exchange properties. Cycling plants showed primarily daytime CO2 uptake typical of C3 plants, but with a slight diurnal acid fluctuation, whereas CAM plants showed nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation. Results from fluorescence measurements indicated no significant differences in photochemical quenching between cycling and CAM plants; however, sizable differences were detected in nonphoto-chemical quenching (qn), with the largest differences being observed during the middle of the day. Cycling plants had lower qn than CAM plants, indicating altered photosynthetic regulation processes. This qn difference was believed to be related to reduced internal CO2 concentration in the CAM plants because of daytime stomatal closure and reduced deacidification rates in the late afternoon when most of the malic acid has been utilized. Experimentally, higher external CO2 given to plants in the CAM mode resulted in a decline in qn in comparison to that measured in plants in the cycling mode. No changes were observed in photochemical quenching when CO2 was added.  相似文献   

4.
Seasonal Shifts of Photosynthesis in Portulacaria afra (L.) Jacq   总被引:6,自引:5,他引:1       下载免费PDF全文
Portulacaria afra (L.) Jacq., a perennial facultative Crassulacean acid metabolism (CAM) species, was studied under natural photoperiods and temperatures in San Diego, California. The plants were irrigated every fourth day throughout the study period. Measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made periodically from July 1981 through May 1982. P. afra maintained C3 photosynthesis during the winter and the spring. Diurnal acid fluctuations were low and maximal 14CO2 uptake occurred during the day. The day/night ratio of carbon uptake varied from 5 to 10 and indicated little nocturnal CO2 uptake. CAM photosynthesis occurred during the summer and a mixture of both C3 and CAM during the fall. Large acid fluctuations of 100 to 200 microequivalents per gram fresh weight were observed and maximal 14CO2 uptake shifted to the late night and early morning hours. Daytime stomatal closure was evident. A reduction in the day/night ratio of carbon uptake to 2 indicated a significant contribution of nocturnal CO2 uptake to the overall carbon gain of the plant. The seasonal shift from C3 to CAM was facilitated by increasing daytime temperature and accompanied by reduced daytime CO2 uptake despite irrigation.  相似文献   

5.
Responses of succulents to plant water stress   总被引:19,自引:16,他引:3       下载免费PDF全文
Experiments were performed to test the hypothesis that succulents “shift” their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C3-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO2 uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C3-photosynthesis to internal cycling of CO2. Acid fluctuation commenced in response to stress but exogenous CO2 uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO2 uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO2 cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids.  相似文献   

6.
Nobel PS 《Plant physiology》1976,58(4):576-582
The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year.  相似文献   

7.
Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the middle of the photoperiods, preceded the occurrence of nocturnal net CO2 uptake. During these reductions, intercellular CO2 partial pressure and rates of photosynthetic electron transport decreased. With advancing age, leaves of plants grown under nonsaline conditions exhibited progressively greater diurnal reductions in turgor pressure and developed a low degree of CAM activity.  相似文献   

8.
It has been found that the stomatal behaviour of C3 and C4 plants can be predicted from the assumption that they increase transpiration whenever the increase δW in daily water loss is offset by a gain of at least λδW in carbon assimilation, where the minimum acceptable marginal conversion efficiency λ is determined by long term ecological factors, and is essentially constant within the course of a day. This paradigm is here extended to plants with Crassulacean acid metabolism (CAM). During daytime assimilation the results are the same as for C3 and C4 metabolisms. However night-time assimilation can be inhibited by the accumulation of malate in the cell vacuoles. In this event our model predicts that in a constant environment the stomatal conductance remains proportional to the square root of the mesophyll conductance as the latter declines. This is intermediate between keeping a constant stomatal conductance and keeping a constant intercellular CO2 concentration (as tends to occur in the C3/C4 model when illumination varies), and results in an increasing intercellular CO2 concentration towards the end of the night. This prediction accords with the Agave data of Nobel & Hartsock 1979. The model also predicts the allocation of time between C3 and CAM for different degrees of water stress. The results agree qualitatively with observation, even though physiological changes (other than stomatal conductance) are not included in the model.  相似文献   

9.
CO2 and water vapor exchange studies of intact plants of black needle rush (Juncus roemerianus Scheele) were conducted in an undisturbed marsh community on Sapelo Island, Georgia. The seasonal patterns of the light and temperature responses of net photosynthesis, transpiration, leaf diffusive conductance, water-use efficiency and respiration were determined five times over the year. Internal resistances to CO2 uptake were also evaluated. Net photosynthesis was highest in early spring, but declined only slightly through the year. A distinct and moderate temperature optimum of net photosynthesis was observed with decreasing rates above 30 C. Leaf conductances to water vapor were similar at all seasons and were high at cooler temperatures and decreased with increasing temperature. Transpiration was relatively high and constant during all seasons. The water-use efficiency of photosynthesis was high below 25 C, but decreased sharply above that temperature. Dark respiration was relatively low. Seasonal changes reflected changes in leaf density. Decreasing stomatal conductances and increasing respiration rates reduced net photosynthesis at higher temperatures. The stomatal resistance increased and internal resistances to CO2 uptake decreased over the year, but the total resistance remained constant. The internal resistance to CO2 uptake was consistently higher than the stomatal resistance. These seasonal response patterns show that J. roemerianus is well adapted to the seasonal changes in ambient temperature and irradiance and other microenvironmental factors in the high marsh. These physiological characteristics permit this C3 species to maintain a high productivity in a seasonally hot and stressful environment.  相似文献   

10.
Shoots of Sedum nuttallianum exhibited CAM* acid fluctuations in the field. These nocturnal acid accumulations persisted in the laboratory under well-watered and water-stressed conditions. Simultaneous measurements of transpiration, however, indicated daytime stomatal opening and nocturnal stomatal closure. Measurements of CO2 and H2O vapor exchange continuously for six days after watering substantiated these results in part: the majority of CO2 uptake occurred during the day early in the experiment; however, after several days without water, nighttime CO2 uptake was stimulated and eventually was greater than the drastically reduced daytime CO2 uptake. This nighttime uptake was never quite sufficient to account for all estimated increases in tissue acidity. Thus, a combination of CAM and CAM-cycling occurred early in the desiccation experiment. Evidence for CAM and a form of CAM-idling was found later in the experiment. Though nighttime CO2 uptake occurred and persisted after only one day without water, rates were too low to alter the tissue 13C/12C value from a C3-like number (–30). Thus, although CAM and CAM-idling may have survival value during extended droughts, shoots of S. nuttallianum apparently utilize the C3 pathway to obtain most of their carbon.Abbreviations C3 pathway - CO2 fixation pathway in which an intermediate containing 3 carbon atoms is formed - CAM Crassulacean acid metabolism - Chl Chlorophyll - ci internal CO2 concentration - DW Dry weight - gc mean conductance to CO2 - FW Fresh weight - PAR Photosynthetically active radiation - SD Standard deviation - vpd Vapor pressure deficit - WUE Water use efficiency  相似文献   

11.
Photosynthesis in C3 plants is CO2 limited and therefore any increase in Rubisco carboxylation substrate may increase net CO2 fixation, unless plants experience acclimation or other limitations. These aspects are largely unexplored in grapevine. Photosynthesis analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the decreasing photosynthesis observed in Tempranillo grapevines (Vitis vinifera) from veraison to ripeness, modulated by CO2, temperature and water availability. Photosynthesis and photosystem II photochemistry decreased from veraison to ripeness. The elevated CO2 and temperature increased photosynthesis, but transiently, in both well irrigated (WI) and water‐stressed plants. Photosynthetic rates were maxima 1 week after the start of elevated CO2 and temperature treatments, but differences with treatments of ambient conditions disappeared with time. There were not marked changes in leaf water status, leaf chlorophyll or leaf protein that could limit photosynthesis at ripeness. Leaf total soluble sugars remained at ripeness as high as 2 weeks after the start of treatments. On the other hand, and as expected, CO2 diffusional limitations impaired photosynthesis in grapevine plants grown under water scarcity, stomatal and mesophyll conductances to CO2 decreased and in turn low chloroplastic CO2 concentrations limited photosynthetic CO2 fixation. In summary, photochemistry and photosynthesis from veraison to ripeness in Tempranillo grapevine were dominated by a developmental‐related decreasing trend that was only transiently influenced by elevated CO2 concentrations.  相似文献   

12.
C4 photosynthesis and water stress   总被引:1,自引:0,他引:1  
Ghannoum O 《Annals of botany》2009,103(4):635-644

Background

In contrast to C3 photosynthesis, the response of C4 photosynthesis to water stress has been less-well studied in spite of the significant contribution of C4 plants to the global carbon budget and food security. The key feature of C4 photosynthesis is the operation of a CO2-concentrating mechanism in the leaves, which serves to saturate photosynthesis and suppress photorespiration in normal air. This article reviews the current state of understanding about the response of C4 photosynthesis to water stress, including the interaction with elevated CO2 concentration. Major gaps in our knowledge in this area are identified and further required research is suggested.

Scope

Evidence indicates that C4 photosynthesis is highly sensitive to water stress. With declining leaf water status, CO2 assimilation rate and stomatal conductance decrease rapidly and photosynthesis goes through three successive phases. The initial, mainly stomatal phase, may or may not be detected as a decline in assimilation rates depending on environmental conditions. This is because the CO2-concentrating mechanism is capable of saturating C4 photosynthesis under relatively low intercellular CO2 concentrations. In addition, photorespired CO2 is likely to be refixed before escaping the bundle sheath. This is followed by a mixed stomatal and non-stomatal phase and, finally, a mainly non-stomatal phase. The main non-stomatal factors include reduced activity of photosynthetic enzymes; inhibition of nitrate assimilation, induction of early senescence, and changes to the leaf anatomy and ultrastructure. Results from the literature about CO2 enrichment indicate that when C4 plants experience drought in their natural environment, elevated CO2 concentration alleviates the effect of water stress on plant productivity indirectly via improved soil moisture and plant water status as a result of decreased stomatal conductance and reduced leaf transpiration.

Conclusions

It is suggested that there is a limited capacity for photorespiration or the Mehler reaction to act as significant alternative electron sinks under water stress in C4 photosynthesis. This may explain why C4 photosynthesis is equally or even more sensitive to water stress than its C3 counterpart in spite of the greater capacity and water use efficiency of the C4 photosynthetic pathway.Key words: C3 and C4 photosynthesis, stomatal and non-stomatal limitation, high CO2, water stress  相似文献   

13.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0μmol CO2 m?2s?1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m?2s?1 averaged 208±14 μl l?1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the depence of net photosynthesis on intercellular CO2 concetration changed with water vapor pressure deficit.  相似文献   

14.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

15.
J. Bergelson  P. Kareiva 《Oecologia》1987,72(3):457-460
Summary Clusia rosea Jacq. is a hemiepiphyte having Crassulacean Acid Metabolism (CAM). In its natural habitat Clusia begins its life cycle as an epiphyte and eventually becomes a rooted tree. These two stages of the life cycle of Clusia represent markedly different water regimes. Our CO2 exchange, stomatal conductance, titratable acidity, and stable carbon isotope ratio measurements indicate that Clusia has a flexible photosynthetic mode, where CO2 is fixed mostly via CAM during its epiphytic stage, when water availability is low, and via both CAM and C3 during its rooted stage.  相似文献   

16.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0 μmol CO2 m-2 s-1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m-2 s-1 averaged 208±14 μl l-1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the dependence of net photosynthesis on intercellular CO2 concentration changed with water vapor pressure deficit.  相似文献   

17.
Abstract Field measurements of the gas exchange of epiphytic bromeliads were made during the dry season in Trinidad in order to compare carbon assimilation with water use in CAM and C3 photosynthesis. The expression of CAM was found to be directly influenced by habitat and microclimate. The timing of nocturnal CO2 uptake was restricted to the end of the dark period in plants found at drier habitats, and stomatal conductance in two CAM species was found to respond directly to humidity or temperature. Total night-time CO2 uptake, when compared with malic-acid formation (measured as the dawn-dusk difference in acidity, ΔH+), could only account for 10–40% of the total ΔH+ accumulated. The remaining malic acid must have been derived from the refixation of respired CO2 (recycling). Within the genus Aechmea (12 samples from four species), recycling was significantly correlated with night temperature at the six sample sites. Recycling was lowest in A. fendleri (54% of ΔH+ derived from respired CO2), a CAM bromeliad with little water-storage parenchyma that is restricted to wetter, cooler regions of Trinidad. Gas-exchange rates of C3 bromeliads were found to be similar to those of the CAM bromeliads, with CO2 uptake from 1 to 3 μmol m?2 s?1 and stomatal conductances generally up to 100 mmol m?2 s?1. The midday depression of photosynthesis occurred in exposed habitats, although photosynthetically active radiation (PAR) limited photosynthesis in shaded habitats. CO2 uptake of the C3 bromeliad Guzmania lingulata was saturated at around 500 μmol m?2 s?1 PAR, suggesting that epiphytic plants found in the shaded forest understorey are shade-tolerant rather than shade-demanding. Transpiration ratios (TR) during CO2 fixation in CAM (Phase I and IV) and C3 bromeliads were compared at different sites in order to assess the efficiency of water utilization. For the epiphytes displaying marked uptake of CO2, TR were found to be lower than many previously published values. In addition, the average TR values were very similar for dark CO2 uptake in CAM (42 ± 41, n= 12), Phase IV of CAM (69 ± 36, n= 3) and for C3 photosynthesis (99 ± 73, n= 4) in these plants. It appears that recycling of respired CO2 by CAM bromeliads and efficient use of water in all phases of CO2 uptake are physiological adaptations of bromeliads to arid microclimates in the humid tropics.  相似文献   

18.
M. Kluge 《Oecologia》1977,29(1):77-83
Summary Sedum acre L. collected from its natural stands south of Darmstadt (Germany) showed 13C values typical for C3 plants. This suggests that in situ at the natural stand CO2 was fixed mainly via the C3 mode of photosynthesis rather than via the CAM mode. However, experimental water stress shifts the CO2 exchange pattern from the C3 type to CAM type. Simultaneously, a diurnal rhythm of malic acid oscillation, typical for CAM, and increase of PEP-carboxylase and malic enzyme activities developed. Hence, Sedum acre is obviously to be classified as a facultative CAM plant. Because of the temperature characteristics of CO2 exchange in Sedum acre, in situ CO2 should be harvested from the atmosphere mainly during the seasons where water stress situations capable of inducing CAM are unlikely to occur.  相似文献   

19.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

20.
A portable open gas-exchange system (Li-6400, Li-Cor, Inc., Lincoln, NE, USA) has been widely used for the measurement of net gas exchanges and calibration/parameterization of leaf models. Measurement errors due to diffusive leakage rates of water vapor (LW) and CO2 (LC) between inside and outside of the leaf chamber, and the inward dark transpiration rate (DW) and dark respiration rate (DC) released from the leaf under the gasket, can be significant. Rigorous model-based approaches were developed for estimating leakage coefficients of water vapor (KW) and CO2 (KC) and correcting for the combination of these errors. Models were based on mass balance equations and the Dusty Gas Model for a ternary gas mixture of water vapor, CO2, and dry air. Experiments were conducted using two Li-6400 systems with potato and soybean leaves. Results indicated that models were reliable for estimating KW and KC, and the values varied with instrument, chamber size, gasket condition, and leaf structure. A thermally killed leaf should be used for this determination. Measurement error effects on parameterization of the Farquhar et al. (1980) model as determined by P N/C i curves were substantial and each parameter had its own sensitivity to measurement errors. Results also indicated that all four error sources should be accounted for when correcting measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号