首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Banik  U Ganguly 《FEBS letters》1988,236(2):489-492
Rat intestinal epithelial cells were labelled with [32P]Pi and extracted, and the phospholipids were analysed by thin-layer chromatography. 32P-incorporation in phosphatidylinositol (PI) and phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-phosphate (PIP2) were measured in control and heat stable enterotoxin (ST)-treated cells. ST was found to induce rapid degradation of PIP and PIP2. The degradation of inositol lipids was accompanied by an increase of water soluble inositol phosphate (IP1, IP2, IP3) compounds. There was a two-fold increase of radioactivity in IP2 and IP3 but no significant change was observed in IP1. Phospholipase C activity was increased tenfold with substrate PIP2 in ST-pretreated cells. The present study indicates that ST triggers another second messenger system by increasing the PIP2 hydrolysis with the enzyme phospholipase C.  相似文献   

2.
Carbamazepine is used to treat manic-depressive disorder, and is also an anticonvulsant. Rats were injected with this drug 90 min prior to this experiment, when mild inhibition of convulsions took place. Intraventricular injections of 14 muCi [3H]myoinositol were made 20-24 hrs prior to the experiment. Ninety min after intraperitoneal injection of carbamazepine or vehicle, rats were given electroconvulsive shock or sham procedure and sacrificed 30 sec later. Incorporation of radiolabel into inositol lipids and inositol phosphates was analyzed in cerebral cortex and hippocampus. Carbamazepine's effects on the brain inositol lipid cycle, studied here for the first time, showed 1) enhanced labeling in the polyphosphoinositides (carbamazepine-ECS groups showed increases of about 40% in PIP2); 2) decreased [H]IP1 levels; and 3) inhibition of ECS-induced [3H]-IP3 accumulation.  相似文献   

3.
Phosphoinositides of human, rabbit, rat, and turkey erythrocytes were radiolabeled by incubation of intact cells with [32P]Pi. Guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and NaF, which are known activators of guanine nucleotide regulatory proteins, caused a large increase in [32P]inositol phosphate release from plasma membranes derived from turkey erythrocytes, but had no effect on inositol phosphate formation by plasma membranes prepared from the mammalian erythrocytes. High performance liquid chromatography analysis indicated that inositol bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate all increased by 20-30-fold during a 10-min incubation of turkey erythrocyte membranes with GTP gamma S. The increase in inositol phosphate formation was accompanied by a similar decrease in radioactivity in phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). GTP gamma S increased inositol phosphate formation with a K0.5 of 600 nM; guanosine 5'-(beta, gamma-imido)trisphosphate was 50-75% as efficacious as GTP gamma S and expressed a K0.5 of 36 microM. Although GTP alone had little effect on inositol phosphate formation, it blocked GTP gamma S-stimulated inositol phosphate formation, as did guanosine 5'-O-(2-thiodiphosphate). Turkey erythrocytes were also shown to express phosphatidylinositol synthetase activity in that incubation of cells with [3H] inositol resulted in incorporation of radiolabel into phosphatidylinositol, PIP, and PIP2. Incubation of membranes derived from [3H]inositol-labeled erythrocytes with GTP gamma S resulted in large increases in [3H] inositol phosphate formation and corresponding decreases in radiolabel in PIP and PIP2. The data suggest that, in contrast to mammalian erythrocytes, the turkey erythrocyte expresses a guanine nucleotide-binding protein that regulates phospholipase C, and as such, should provide a useful model system for furthering our understanding of hormonal regulation of this enzyme.  相似文献   

4.
Hydrolysis-resistant analogues of GTP specifically stimulate the formation of [3H]inositol mono-, bis- and trisphosphates by saponin-permeabilized Swiss 3T3 cells prelabelled with [3H]inositol. Each inositol phosphate is formed largely by hydrolysis of its parent lipid and not by dephosphorylation of inositol 1,4,5-trisphosphate [(1,4,5)IP3]. Although hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is most sensitive to guanine nucleotides, hydrolysis of phosphatidyl-inositol (PI) and phosphatidylinositol 4-phosphate (PIP) is quantitatively more important. These results suggest that a guanine nucleotide-dependent regulatory protein(s) (G-protein) is involved in regulating the hydrolysis of PI and PIP, as well as PIP2, and so may allow formation of diacylglycerol (DG) without simultaneous production of (1,4,5)IP3 and mobilization of intracellular Ca2+.  相似文献   

5.
The effect of prolactin on [3H]inositol metabolism in cultured mouse mammary gland explants derived from 12-14-day pregnant mice was determined. In mammary gland explants that were prelabeled by culturing the tissues with 3 microCi/ml myo-[3H]inositol for 48 h, the levels of 3H in inositol derivatives were determined. The temporal effect of prolactin on the quantity of 3H present in phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), phosphatidylinositol bisphosphate (PIP2) and various inositol phosphate containing fractions were examined. Prolactin significantly stimulated the accumulation of 3H label in inositol monophosphate (IP1), inositol bisphosphate (IP2) and inositol trisphosphate (IP3) 1-3 h after addition of prolactin. An effect of prolactin on the accumulation of inositol derivatives was not apparent at prolactin-exposure periods of less than 60 min; nor was an effect of prolactin apparent when exposure periods of 4 h or longer were employed. Prolactin did not significantly decrease the 3H label in PI, PIP or PIP2 except at 1 and 2 h. These data when considered with other apropos studies are compatible with the conclusion that the turnover of inositol lipid derivatives may be involved in the mechanism by which prolactin regulates metabolic processes in the mammary gland. The primary action of prolactin on mammary cells, however, would not appear to involve its action on the metabolism of the inositol derivatives in view of the extended time required (1 h) before effects of prolactin on perturbations of inositide metabolism are manifested.  相似文献   

6.
When segments of rat tail artery were labeled with [3H]inositol and then stimulated with norepinephrine (NE), the inositol phosphates produced were primarily IP and IP2, together with a small but significant amount of Ins(1,4,5)P3 and a very small amount of Ins(1,3,4,5)P4. It has been unclear in many studies whether or not the relatively large levels of IP and IP2 produced in [3H]inositol-labeled tissue represent indirect products of phosphatidyl inositol(4,5)bis phosphate breakdown (through Ins(1,4,5)P3) or direct products of phosphatidyl inositol 4 monophosphate and phosphatidyl inositol breakdown. In order to answer this question tail artery segments were prelabeled with [3H]inositol and then permeabilized with beta escin and stimulated with norepinephrine and GTP gamma S, so that increases in IP, IP2, and Ins(1,4,5)P3 were still observed. If these permeable segments were stimulated with agonist in the presence of compounds known to inhibit Ins(1,4,5)P3 5-phosphatase, such as glucose 6P, (2,3)diphosphoglycerate, or Ins(1,4,5)P3, the levels of labeled Ins(1,4,5)P3 and labeled IP2 were increased, while the level of stimulated labeled IP was unchanged. This indicated that some of the IP2 and IP formed in these cells was produced from PIP2 but that some of these compounds might be formed from PIP or PI. When the isomers of inositol monophosphate, Ins 1P and Ins 4P, were separated by HPLC, it was shown that after prelabeled tail artery was stimulated by norepinephrine for periods of 1-2 min, the predominant isomer formed was Ins 4P, indicating either PIP2 or PIP as the source. However, after 5-20 min stimulation, both Ins 1P and Ins 4P were formed in equal amounts, suggesting that during sustained stimulation of smooth muscle PI itself was broken down directly. Therefore it appears that within 1-2 min of norepinephrine addition to vascular smooth muscle the bulk of the IP and IP2 produced are derived from PIP2 via IP3, while after 20 min of norepinephrine treatment much of the IP comes directly from PI. This suggests that the regulation of PLC in this tissue is more complicated than has been previously believed.  相似文献   

7.
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.  相似文献   

8.
Rabbit platelets were labelled with [3H]inositol and a membrane fraction was isolated in the presence of ATP, MgCl2 and EGTA. Incubation of samples for 10 min with 0.1 microM-Ca2+free released [3H]inositol phosphates equivalent to about 2.0% of the membrane [3H]phosphoinositides. Addition of 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) caused an additional formation of [3H]inositol phosphates equivalent to 6.6% of the [3H]phosphoinositides. A half-maximal effect was observed with 0.4 microM-GTP[S]. The [3H]inositol phosphates that accumulated consisted of 10% [3H]inositol monophosphate, 88% [3H]inositol bisphosphate ([3H]IP2) and 2% [3H]inositol trisphosphate ([3H]IP3). Omission of ATP and MgCl2 led to depletion of membrane [3H]polyphosphoinositides and marked decreases in the formation of [3H]inositol phosphates. Thrombin (2 units/ml) or GTP (4-100 microM) alone weakly stimulated [3H]IP2 formation, but together they acted synergistically to exert an effect comparable with that of 10 microM-GTP[S]. The action of thrombin was also potentiated by 0.1 microM-GTP[S]. Guanosine 5'-[beta-thio]diphosphate not only inhibited the effects of GTP[S], GTP and GTP with thrombin, but also blocked the action of thrombin alone, suggesting that this depended on residual GTP. Incubation with either GTP[S] or thrombin and GTP decreased membrane [3H]phosphatidylinositol 4-phosphate ([H]PIP) and prevented an increase in [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) observed in controls. Addition of unlabelled IP3 to trap [3H]IP3 before it was degraded to [3H]IP2 showed that only about 20% of the additional [3H]inositol phosphates that accumulated with GTP[S] or thrombin and GTP were derived from the action of phospholipase C on [3H]PIP2. The results provide further evidence that guanine-nucleotide-binding protein mediates signal transduction between the thrombin receptor and phospholipase C, and suggest that PIP may be a major substrate of this enzyme in the platelet.  相似文献   

9.
The effects of thrombin and GTP gamma S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [3H]inositol-labeled membranes or with lipid vesicles containing either [3H]phosphatidylinositol or [3H]phosphatidylinositol 4,5-bisphosphate. GTP gamma S (1 microM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP3), inositol bisphosphate (IP2), or inositol phosphate (IP) from [3H]inositol-labeled membranes. IP2 and IP3, but not IP, from [3H]inositol-labeled membranes were, however, stimulated 3-fold by GTP gamma S (1 microM) plus thrombin (1 unit/mL). A higher concentration of GTP gamma S (100 microM) alone also stimulated IP2 and IP3, but not IP, release. In the presence of 1 mM calcium, release of IP2 and IP3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) by platelet membrane associated PLC was also markedly enhanced by GTP gamma S (100 microM) or GTP gamma S (1 microM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP gamma S (100 microM) or calcium (1 mM) dependent PIP2 breakdown, while TPA inhibited GTP gamma S-dependent but not calcium-dependent phospholipase C activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Human platelet plasma membranes incubated in the presence of [gamma-32P]ATP and 15 mM MgCl2 incorporated radioactivity mostly into phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP), which represented together over 90% of the total lipid radioactivity. After washing, reincubation of prelabelled membranes revealed some hydrolysis of the two compounds by phosphomonoesterase(s), as detected by the release of radioactive inorganic phosphate (Pi) from the two phospholipids. This degradation attained 40%/30 min for PIP in the presence of 2 mM calcium and cytosol. The effect of calcium was observed at concentrations equal to or greater than 10(-4) M. In no case did calcium alone facilitate the formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). In contrast, simultaneous addition of 2 mM calcium and 2 mg/ml sodium deoxycholate promoted the formation of IP3 and IP2, indicating phosphodiesteratic cleavage of PIP2 and PIP. Phospholipase C activity was detected at calcium concentrations as low as 10(-7) M, in which case PIP2 hydrolysis was slightly more pronounced compared to PIP. Addition of cytosol increased to some extent the phospholipase C activity, suggesting that the low amount of enzyme remaining in the membrane is sufficient to promote submaximal degradation of PIP2 and PIP. We conclude that platelet polyphosphoinositides are present in the plasma membrane in a state where they remain inaccessible to phospholipase C, which is still fully active even at basal calcium concentrations, i.e., 10(-7) M. These results support the view that phosphodiesteratic cleavage of PIP2 promotes and thus precedes calcium mobilization brought about by IP3. The in vitro model presented here may prove very useful in future studies dealing with the mechanism rendering polyphosphoinositides accessible to phospholipase C attack upon agonist-receptor binding.  相似文献   

11.
The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.  相似文献   

12.
The metabolism of polyphosphoinositides (PPI) has been investigated during the meiosis reinitiation of the oocytes of a prosobranch mollusk, the limpet Patella vulgata. Meiosis reinitiation which leads to germinal vesicle breakdown (GVBD) and metaphase-1 spindle formation was artificially induced by treating the prophase-blocked oocytes with 10 mM NH4Cl, pH 8.2. This treatment, which results in a rise in intracellular pH, triggered a general increase in polyphosphoinositide synthesis. Determinations of phosphorus content showed that maturation induced a 30 to 50% increase in both phosphatidylinositol (PI) and phosphatidylinositol-1 monophosphate (PIP) concentrations. Incorporations of 32PO4 and [3H]inositol have been measured in three classes of polyphosphoinositides: PI, PIP, and phosphatidylinositol 4,5-bisphosphate (PIP2). By comparing incorporation rates of the radiolabeled precursors into PPI before and after meiosis reinitiation, we found that artificial maturation by ammonia induced a 50-fold increase in the turnover of these lipids. No significant burst of inositol 1,4,5-trisphosphate (IP3) was observed after maturation. We suggest that modifications in PPI metabolism occurring at maturation of Patella oocytes might ensure the formation of an important stock of PPI that would be available for the profuse production of IP3, the messenger responsible for the Ca2+ signal at fertilization.  相似文献   

13.
Phosphatidylinositol 3-kinase associates with the polyomavirus middle T antigen (PyMTAg)-pp60c-src complex in polyomavirus-transformed cells. Here we show that anti-PyMTAg immunoprecipitates from PyMTAg-transformed NIH 3T3 cells have lipid kinase activities that phosphorylate phosphatidylinositol, phosphatidylinositol-4-bisphosphate, and phosphatidylinositol-4,5-bisphosphate at the D-3 position of the inositol ring to produce three new polyphosphoinositides: phosphatidylinositol-3-phosphate (PI-3-P), phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), and phosphatidylinositol trisphosphate (PIP3), respectively. PI-3-P was detected in intact parental and PyMTAg-transformed NIH 3T3 fibroblasts at both low and high cell densities. However, parental NIH 3T3 fibroblasts produced no detectable PI-3,4-P2 or PIP3 at high density. In contrast, growing, subconfluent cells and wild-type PyMTAg-transformed cells at high density had greatly enhanced incorporation of [3H]-inositol into these highly phosphorylated lipids. Cells transfected with a transformation-defective mutant of PyMTAg had undetectable levels of PI-3,4-P2 and PIP3 at high density. Thus, the synthesis of novel polyphosphoinositides by lipid kinase activity associated with PyMTAg correlates with cell growth and transformation.  相似文献   

14.
Phosphatidylserine/calcium-dependent protein kinase C (PKC) from rat brain is activated fifty times more efficiently by phosphatidylinositol-4,5-bisphosphate (PIP2) (Kapp = 0.04 mole% in Triton-lipid micelles) than by diacylglycerol (DG) (Kapp = 2 mole%). Both effector lipids appear to bind to the same site but PIP2 may confer a narrower substrate specificity on the kinase. DG, which together with inositol trisphosphate (IP3) is generated by hydrolysis from PIP2 after cell stimulation, has been considered the natural activator of the kinase but it is likely to be anteceded in this function by PIP2; DG may perhaps retain the function of a back-up activator. The lack of PKC-activation by phosphatidylinositol (PI) or phosphatidylinositol-4-phosphate (PIP) opens the possibility that the Inositide Shuttle, PI reversible PIP reversible PIP2, has a role in controlling the activity of the kinase.  相似文献   

15.
This study evaluates the role of phosphatidylinositol 4,5-bisphosphate (PIP2) and its metabolites as possible mediators in the activation of phospholipases A2 in porcine aortic endothelial cells. We compared the time courses of bradykinin-induced turnover of phosphoinositides and the appearance of unesterified arachidonic acid (uAA) and eicosanoids. The metabolism of phosphoinositides was examined in cells prelabeled with [3H]inositol, which has a similar distribution as the endogenous inositol lipids. At 37 degrees C, bradykinin induced a rapid rise in lysophosphatidylinositol (lyso-PI) and inositol 1,4,5-trisphosphate (IP3) as well as a decrease in PIP2. Lyso-PI formation was detected at 10 s, as early as PIP2 degradation and IP3 formation. This suggests that the activation of PIP2-hydrolyzing phospholipase C and PI-hydrolyzing phospholipase A2 are simultaneous. However, at 30 degrees C, lyso-PI formation was detected in the absence of an increase in IP3 indicating that the activation of phospholipase A2 does not require the accumulation of IP3. The time course of formation of uAA and eicosanoids were examined in [3H]arachidonic acid-prelabeled cells. The 3H radioactivity was distributed among the phospholipid classes and subclasses the same as the endogenous phospholipids. Bradykinin stimulated the intracellular accumulation of uAA, detectable at 5 s, earlier than that of 1,2-diacylglycerol and phosphatidic acid. Such immediate formation of uAA further supports the notion that activation of phospholipase A2 is a very early event during the interaction of bradykinin with porcine endothelial cells, and that PIP2 hydrolysis is not prerequisite for the initial activation of phospholipase A2.  相似文献   

16.
Rat hepatocytes whose phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) had been labelled for 60 min with 32P were treated with glucagon for 10 min or phenylephrine for 2 min. Glucagon caused a 20% increase in PIP but no change in PIP2 whereas phenylephrine caused a similar increase in PIP but a 15% decrease in PIP2. Addition of both hormones together for 10 min produced a 40% increase in PIP. A crude liver mitochondrial fraction incubated with [32P]Pi and ADP incorporated label into PIP, PIP2 and phosphatidic acid. The PIP2 was shown to be in contaminating plasma membranes and PIP in both lysosomal and plasma-membrane contamination. A minor but definitely mitochondrial phospholipid, more polar than PIP2, was shown to be labelled with 32P both in vitro and in hepatocytes. The rate of 32P incorporation into PIP was faster in mitochondrial/plasma-membrane preparations from rats treated with glucagon or if 3 microM-Ca2+ and Ruthenium Red were present in the incubation buffer. Loss of 32P from membranes labelled in vitro was shown to be accompanied by formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate, and was faster in preparations from glucagon-treated rats or in the presence of 3 microM-Ca2+. It is concluded that glucagon stimulates both PIP2 phosphodiesterase and phosphatidylinositol kinase activities, as does the presence of 3 microM-Ca2+. The resulting formation of IP3 may be responsible for the observed release of intracellular Ca2+ stores. The roles of a guanine nucleotide regulatory protein and phosphorylation in mediating these effects are discussed.  相似文献   

17.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   

18.
The present studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases intracellular cAMP, also increases "second messengers" derived from inositol phospholipid hydrolysis in isolated bovine luteal cells. In luteal cells prelabeled with 32PO4, LH provoked increases in labeling of phosphatidic acid, phosphatidylinositol, and polyphosphatidylinositol (PIP). No reductions in 32P-prelabeled PIP and PIP2 were observed in LH-treated cells. In luteal cells prelabeled with myo-[2-3H]inositol, LH provoked rapid (10-30 s) and sustained (up to 60 min) increases in the levels of inositol mono-, bis-, and trisphosphates (IP, IP2, and IP3, respectively. IP3 was formed more rapidly than IP2 or IP following LH treatment. In addition, LH increased (50%) levels of [3H]inositol phospholipids in 30-min incubations. LiCl (10 mM) enhanced inositol phosphate accumulation in response to LH. Maximal increases in IP3 occurred at 1-10 micrograms/ml of LH. Similar temporal and dose-response relationships were observed for LH-stimulated IP3 and cAMP accumulation. However, exogenous cAMP (8-bromo-cAMP, 5 mM) and forskolin (10 microM) had no effect on inositol phosphate synthesis. The initial (1 min) effects of LH on IP3 and cAMP were independent of extracellular calcium concentrations, whereas the sustained (5 min) effect of LH on IP3, but not cAMP, was dependent on a source of extracellular calcium. LH-stimulated progesterone synthesis was also dependent on the presence of extracellular calcium. LH induced rapid and concentration-dependent increases in [Ca2+]i as measured by Quin 2 fluorescence. The LH-induced increases in [Ca2+]i were maximal within 30 s (approximately 2-fold) and remained elevated for at least 10 min. In Ca2+-free media containing 2 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, LH was still able to increase [Ca2+]i, but the increase was slightly less in magnitude and of shorter duration (2-4 min). These findings demonstrate that LH can rapidly raise levels of IP3 and [Ca2+]i, as well as, cAMP in bovine luteal cells. These findings suggest that at least two second messenger systems exist to mediate the action of LH in the corpus luteum.  相似文献   

19.
The effects of diabetes and insulin administration on certain aspects of phosphoinositide metabolism in R3230AC mammary tumors were studied in vivo. Three weeks after diabetes was induced by streptozotocin, [3H]myoinositol incorporation into PI, PIP and PIP2 was increased in R3230AC tumors, whereas the formation of [3H]IP, [3H]IP2 and [3H]IP3 was decreased. Administration of protamine zinc insulin (3IU, twice daily, for 3 days) to diabetic rats decreased [3H]myoinositol incorporation into phosphoinositides and inositol phosphates in these mammary tumors. The R3230AC tumor from insulin-treated diabetic hosts had lower levels of unmetabolized [3H]-myoinositol compared to tumors from diabetic animals. Enzymatically-dissociated tumor cells from insulin-treated animals displayed decreased myoinositol transport in vitro. These findings suggest that the insulin-induced decrease in the turnover of inositol lipids in vivo in R3230AC mammary tumors could have resulted from the decreased level of [3H]myoinositol in these cells.  相似文献   

20.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号