首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 degrees C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana.  相似文献   

2.
3.
Protoplasts were tested to determine whether the freezing sensitivity of the sfr4 (sensitive to freezing) mutant of Arabidopsis was due to the mutant's deficiency in soluble sugars after cold acclimation. When grown under nonacclimated conditions, sfr4 protoplasts possessed freezing tolerance similar to that of wild type, with the temperature at which 50% of protoplasts are injured (LT(50)) of -4.5 degrees C. In both wild-type and sfr4 protoplasts, expansion-induced lysis was the predominant lesion between -2 degrees C and -4 degrees C, but its incidence was low (approximately 10%); below -5 degrees C, loss of osmotic responsiveness (LOR) was the predominant lesion. After cold acclimation, the LT(50) was decreased to only -5.6 degrees C for sfr4 protoplasts, compared with -9.1 degrees C for wild-type protoplasts. Although expansion-induced lysis was precluded in both types of protoplasts, the sfr4 protoplasts remained susceptible to LOR. After incubation of seedlings in Suc solution in the dark at 2 degrees C, freezing tolerance and the incidence of freeze-induced lesions in sfr4 protoplasts were examined. The freezing tolerance of isolated protoplasts (LT(50) of -9 degrees C) and the incidence of LOR were now similar for wild type and sfr4. These results indicate that the freezing sensitivity of cold-acclimated sfr4 is due to its continued susceptibility to LOR (associated with lyotropic formation of the hexagonal II phase) and associated with the low sugar content of its cells.  相似文献   

4.
5.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

6.
To test the hypothesis that the up‐regulation of sucrose biosynthesis during cold acclimation is essential for the development of freezing tolerance, the acclimation responses of wild‐type (WT) Arabidopsis thaliana (Heynh.) were compared with transgenic plants over‐expressing sucrose phosphate synthase (over‐sps) or with antisense repression of either cytosolic fructose‐1,6‐bisphosphatase (antifbp) or sucrose phosphate synthase (antisps). Plants were grown at 23 °C and then shifted to 5 °C. The leaves shifted to 5 °C for 10 d and the new leaves that developed at 5 °C were compared with control leaves on plants at 23 °C. Plants over‐expressing sucrose phosphate synthase showed improved photosynthesis and increased flux of fixed carbon into sucrose when shifted to 5 °C, whereas both antisense lines showed reduced flux into soluble sugars relative to WT. The improved photosynthetic performance by the over‐sps plants shifted to 5 °C was associated with an increase in freezing tolerance relative to WT (?9.1 and ?7.2 °C, respectively). In contrast, both antisense lines showed impaired development of freezing tolerance (? 5.2 and ?5.8 °C for antifbp and antisps, respectively) when shifted to 5 °C. In the new leaves developed at 5 °C the recovery of photosynthesis as typically seen in WT was strongly inhibited in both antisense lines and this inhibition was associated with a further failure of both antisense lines to cold acclimate. Thus, functional sucrose biosynthesis at low temperature in the over‐sps plants reduced the inhibition of photosynthesis, maintained the mobilization of carbohydrates from source leaves to sinks and increased the rate at which freezing tolerance developed. Modification of sucrose metabolism therefore represents an additional approach that will have benefits both for the development of freezing tolerance and over‐wintering, and for the supply of exportable carbohydrate to support growth at low temperatures.  相似文献   

7.
Maximum freezing tolerance of Arabidopsis thaliana L. Heyn (Columbia) was attained after 1 week of cold acclimation at 2[deg]C. During this time, there were significant changes in both the lipid composition of the plasma membrane and the freeze-induced lesions that were associated with injury. The proportion of phospholipids increased from 46.8 to 57.1 mol% of the total lipids with little change in the proportions of the phospholipid classes. Although the proportion of di-unsaturated species of phosphatidylcholine and phosphatidylethanolamine increased, mono-unsaturated species were still the preponderant species. The proportion of cerebrosides decreased from 7.3 to 4.3 mol% with only small changes in the proportions of the various molecular species. The proportion of free sterols decreased from 37.7 to 31.2 mol%, but there were only small changes in the proportions of sterylglucosides and acylated sterylglucosides. Freezing tolerance of protoplasts isolated from either nonacclimated or cold-acclimated leaves was similar to that of leaves from which the protoplasts were isolated (-3.5[deg]C for nonacclimated leaves; -10[deg]C for cold-acclimated leaves). In protoplasts isolated from nonacclimated leaves, the incidence of expansion-induced lysis was [less than or equal to]10% at any subzero temperature. Instead, freezing injury was associated with formation of the hexagonal II phase in the plasma membrane and subtending lamellae. In protoplasts isolated from cold-acclimated leaves, neither expansion-induced lysis nor freeze-induced formation of the hexagonal II phase occurred. Instead, injury was associated with the "fracture-jump lesion," which is manifested as localized deviations of the plasma membrane fracture plane to subtending lamellae. The relationship between the freeze-induced lesions and alterations in the lipid composition of the plasma membrane during cold acclimation is discussed.  相似文献   

8.
9.
Transgenic tobacco plants expressing the ascorbate oxidase (AAO) gene in sense and antisense orientations, and an Arabidopsis mutant in which the T-DNA was inserted into a putative AAO gene, were used to examine the potential roles of AAO for salt-stress tolerance in plants. AAO activities in the transgenic tobacco plants expressing the gene in sense and antisense orientations were, respectively, about 16-fold and 0.2-fold of those in the wild type. Under normal growth conditions, no significant differences in phenotypes were observed, except for a delay in flowering time in the antisense plants. However, at high salinity, the percentage germination, photosynthetic activity, and seed yields were higher in antisense plants, with progressively lower levels in the wild type and the sense plants. The redox state of apoplastic ascorbate in sense plants was very low even under normal growth conditions. Upon salt stress, the redox state of symplastic and apoplastic ascorbate decreased among the three types of plants, but was lowest in the sense plants. The hydrogen peroxide contents in the symplastic and apoplastic spaces were higher in sense plants, progressively lower in the wild type, followed by the antisense plants. The Arabidopsis T-DNA inserted mutant exhibited very low ascorbate oxidase activity, and its phenotype was similar to that of antisense tobacco plants. These results suggest that the suppressed expression of apoplastic AAO under salt-stress conditions leads to a relatively low level of hydrogen peroxide accumulation and a high redox state of symplastic and apoplastic ascorbate which, in turn, permits a higher seed yield.  相似文献   

10.
We showed recently that antisense plants with decreased activity of the plastidic ATP/ADP-transporter protein exhibit drastically reduced levels of starch and a decreased amylose/amylopectin ratio, whereas sense plants with increased activity of the transporter possessed more starch than wild-type plants and an increased amylose/amylopectin ratio. In this paper we investigate the effect of altered plastidic ATP/ADP-transporter protein expression on primary metabolism and granule morphology in more detail. Tuber tissues from antisense and sense plants exhibited substantially increased respiratory activity compared with the wild type. Tubers from antisense plants contained markedly increased levels of free sugars, UDP-Glc, and hexose phosphates, whereas phosphoenolpyruvate, isocitrate, ATP, ADP, AMP, UTP, UDP, and inorganic pyrophosphate levels were slightly decreased. In contrast, tubers from sense plants revealed a slight increase in adenine and uridine nucleotides and in the levels of inorganic pyrophosphate, whereas no significant changes in the levels of soluble sugars and metabolites were observed. Antisense tubers contained 50% reduced levels of ADP-Glc, whereas sense tubers contained up to 2-fold increased levels of this sole precursor for starch biosynthesis. Microscopic examination of starch grain morphology revealed that the size of starch grains from antisense tubers was substantially smaller (50%) compared with the wild type. The large starch grains from sense tubers appeared of a more angular morphology, which differed to the more ellipsoid shape of wild type grains. The results suggest a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase is ATP-limited in vivo and that changes in ADP-Glc concentration determine starch yield, as well as granule morphology. Possible factors linking starch synthesis and respiration are discussed.  相似文献   

11.
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.  相似文献   

12.
Responses of cortical microtubules in spinach (Spinacia oleracea L. cv Bloomsdale) mesophyll cells to freezing, thawing, supercooling, and dehydration were assessed. Microtubules were visualized using a modified procedure for indirect immunofluorescence microscopy. Leaf sections of nonacclimated and cold-acclimated spinach were slowly frozen to various temperatures, fixed while frozen, and microtubules immunolabelled. Both nonacclimated and cold-acclimated cells exhibited nearly complete microtubule depolymerization after ice formation. After 1 hour thawing at 23°C, microtubules in both nonacclimated and cold-acclimated cells repolymerized. With time, however, microtubules in nonacclimated cells again depolymerized. Since microtubules in cells of leaf tissue frozen slowly are subjected to dehydration as well as subzero temperatures, these stresses were applied separately and their effects on microtubules noted. Supercooling induced microtubule depolymerization in both nonacclimated and cold-acclimated cells, but to a smaller extent than did freezing. Exposing leaf sections to solutions of sorbitol (a cell wall-penetrating osmoticum) or polyethylene glycol 10,000 (a nonpenetrating osmoticum) at room temperature caused microtubule depolymerization. The effects of low temperature and dehydration are roughly additive in producing the observed microtubule responses during freezing. Only small differences in microtubule stability were resolved between nonacclimated and cold-acclimated cells.  相似文献   

13.
Freezing, dehydration, and supercooling cause microtubules in mesophyll cells of spinach (Spinacia oleracea L. cv Bloomsdale) to depolymerize (ME Bartolo, JV Carter, Plant Physiol [1991] 97: 175-181). The objective of this study was to determine whether the LT50 (lethal temperature: the freezing temperature at which 50% of the tissue is killed) of spinach leaf tissue can be changed by diminishing the extent of microtubule depolymerization in response to freezing. Also examined was how tolerance to the components of extracellular freezing, low temperature and dehydration, is affected by microtubule stabilization. Leaf sections of nonacclimated and cold-acclimated spinach were treated with 20 micromolar taxol, a microtubule-stabilizing compound, prior to freezing, supercooling, or dehydration. Taxol stabilized microtubules against depolymerization in cells subjected to these stresses. When pretreated with taxol both nonacclimated and cold-acclimated cells exhibited increased injury during freezing and dehydration. In contrast, supercooling did not injure cells with taxol-stabilized microtubules. Electrolyte leakage, visual appearance of the cells, or a microtubule repolymerization assay were used to assess injury. As leaves were cold-acclimated beyond the normal period of 2 weeks taxol had less of an effect on cell survival during freezing. In leaves acclimated for up to 2 weeks, stabilizing microtubules with taxol resulted in death at a higher freezing temperature. At certain stages of cold acclimation, it appears that if microtubule depolymerization does not occur during a freeze-thaw cycle the plant cell will be killed at a higher temperature than if microtubule depolymerization proceeds normally. An alternative explanation of these results is that taxol may generate abnormal microtubules, and connections between microtubules and the plasma membrane, such that normal cellular responses to freeze-induced dehydration and subsequent rehydration are blocked, with resultant enhanced freezing injury.  相似文献   

14.
Expression of one specific isoform of plastidic glucose 6-phosphate dehydrogenase (G6PDH) was manipulated in transgenic tobacco. Antisense and sense constructs of the endogenous P2 form of G6PDH were used to transform plants under the control of the cauliflower mosaic virus (CaMV) 35S promotor. Recombinant plants with altered expression were taken through to homozygosity by selective screening. Northern analyses revealed substantial changes in the expression of the P2 form of G6PDH, with no apparent impact on the activity of the cytosolic isoenzyme. Analysis of G6PDH activity in chloroplasts showed that despite the large changes in expression of P2-G6PDH, the range of enzyme activity varied only from approximately 50 to 200% of the wild type, reflecting the presence of a second G6PDH chloroplastic isoform (P1). Although none of the transgenic plants showed any visible phenotype, there were marked differences in metabolism of both sense and antisense lines when compared with wild-type/control lines. Sucrose, glucose and fructose contents of leaves were higher in antisense lines, whereas in overexpressing lines, the soluble sugar content was reduced below that of control plants. Even more striking was the observation that contents of glucose 6-phosphate (Glc6P) and 6-phosphogluconate (6PG) changed, such that the ratio of Glc6P:6PG was some 2.5-fold greater in the most severe antisense lines, compared with those with the highest levels of overexpression. Because of the distinctive biochemical properties of P2-G6PDH, we investigated the impact of altered expression on the contents of antioxidants and the response of plants to oxidative stress induced by methyl viologen (MV). Plants with decreased expression of P2-G6PDH showed increased content of reduced glutathione (GSH) compared to other lines. They also possessed elevated contents of ascorbate and exhibited a much higher ratio of reduced:oxidised ascorbate. When exposed to MV, leaf discs of wild-type and overexpressing lines demonstrated increased oxidative damage as measured by lipid peroxidation. Remarkably, leaf discs from plants with decreased P2-G6PDH did not show any change in lipid peroxidation in response to increasing concentrations of up to 15 micro m MV. The results are discussed from the perspective of the role of G6PDH in carbohydrate metabolism and oxidative stress. It is suggested that the activity of P2-G6PDH may be crucial in balancing the redox poise in chloroplasts.  相似文献   

15.
Infrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves. In contrast, acclimated leaves initiated freezing in a horseshoe pattern beginning at the uppermost edge followed by a slow progression of ice formation across the leaf. However, when acclimated leaves, either previously killed by a slow freeze (2 degrees C h(-1)) or by direct submersion in liquid nitrogen, were refrozen their freezing pattern was similar to nonacclimated leaves. A novel technique was developed using filter paper strips to determine the effects of both sugars and proteins on the rate of freezing of cell extracts. Cell sap from nonacclimated leaves froze 3-fold faster than extracts from acclimated leaves. The rate of freezing in leaves was strongly dependent upon the osmotic potential of the leaves. Simple sugars had a much greater effect on freezing rate than proteins. Nonacclimated leaves containing high water content did not supercool as much as acclimated leaves. Additionally, wetted leaves did not supercool as much as nonwetted leaves. As expected, cell solutes depressed the nucleation temperature of leaves. The use of infrared thermography has revealed that the freezing process in plants is a complex process, reminding us that many aspects of freezing tolerance occur at a whole plant level involving aspects of plant structure and metabolites rather than just the expression of specific genes alone.  相似文献   

16.
Freezing injury in protoplasts isolated from leaves of nonaccli-mated rye (Secale cereale cv Puma) is associated with the formation of the inverted hexagonal (HII) phase. However, in protoplasts from cold-acclimated rye, injury is associated with the occurrence of localized deviations in the fracture plane, a lesion referred to as the "fracture-jump lesion." To establish that these ultrastructural consequences of freezing are not unique to protoplasts, we have examined the manifestations of freezing injury in leaves of non-acclimated and cold-acclimated rye by freeze-fracture electron microscopy. At -10[deg]C, injury in nonacclimated leaves was manifested by the appearance of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and by the frequent occurrence of the HII phase. The HII phase was not observed in leaves of cold-acclimated rye frozen to -35[deg]C. Rather, injury was associated with the occurrence of the fracture-jump lesion between the plasma membrane and closely appressed cytoplasmic membranes. Studies of the time dependence of HII phase formation in nonacclimated leaves indicated that freeze-induced dehydration requires longer times in leaves than in isolated protoplasts. These results demonstrate that the freeze-induced formation of the HII phase in nonacclimated rye and the fracture-jump lesion in cold-acclimated rye are not unique to protoplasts but also occur in the leaves from which the protoplasts are isolated.  相似文献   

17.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

18.
During cold acclimation, winter rye ( Secale cereale L.) plants develop the ability to tolerate freezing temperatures by forming ice in intercellular spaces and xylem vessels. In this study, proteins were extracted from the apoplast of rye leaves to determine their role in controlling extracellular ice formation. Several polypeptides in the 15 to 32 kDa range accumulated in the leaf apoplast during cold acclimation at 5°C and decreased during deacclimation at 20°C. A second group of polypeptides (63, 65 and 68 kDa) appeared only when the leaves were maximally frost tolerant. Ice nucleation activity, as well as the previously reported antifreeze activity, was higher in apoplastic extracts from cold-acclimated than from nonacclimated rye leaves. These results indicate that apoplastic proteins exert a direct influence on the growth of ice. In addition, freezing injury was greater in extracted cold-acclimated leaves than in unextracted cold-acclimated leaves, which suggests that the proteins present in the apoplast are an important component of the mechanism by which winter rye leaves tolerate ice formation  相似文献   

19.
This study was aimed to investigate the possibility of regulating free proline content and ethylene production in the resistant to abiotic stress cv. ‘Hornet H’ and the tolerant to stress cv. ‘Sunday’ of winter rapeseed seedlings by pretreatment with exogenous L-proline and L-glutamine in non-acclimated and cold-acclimated seedlings in relation to freezing tolerance. The ratio of proline content in acclimated (at 4°C) versus non-acclimated (18°C) ‘Hornet H’ seedlings increased 2.12-fold and in ‘Sunday’ seedlings 1.95-fold. Exogenously applied, proline and glutamine produced a positive effect on free proline content in both cold-acclimated and non-acclimated seedlings. At a temperature of -1°C the proline content significantly increased in non-acclimated and especially in cold-acclimated seedlings. At an intensified freezing temperature (?3°C, ?5°C, ?7°C), the proline content decreased in comparison with that at ?1°C, but glutamine, especially proline, in cold-acclimated seedlings takes part in free proline level increase and in seedlings’ resistance to freezing. Ethylene production increased in cold-acclimated conditions and under the effect of exogenous proline and glutamine. In freezing conditions, ethylene production decreased, but in cold-acclimated seedlings and under pretreatment of proline and glutamine the ethylene synthesis was intensive. Thus, free proline content and ethylene production increase in cold-acclimated winter rapeseed seedlings and under pretreatment with glutamine and especially with proline. Free proline is involved in the response to cold stress, and its level may be an indicator of cold-hardening and freezing tolerance, but the role of ethylene in the regulation of cold tolerance remains not quite clear.  相似文献   

20.
In order to better understand the role of cold acclimation in alleviating freezing injury, two barley cultivars with different cold tolerance, i.e. a sensitive cv. Chumai 1 and a tolerant cv. Mo 103, were used. The freezing treatment increased leaf soluble protein content more in the tolerant cultivar than in the sensitive one. Cold acclimation increased H2O2 content of the two cultivars during freezing treatment, especially in Mo 103. Glutathione and ascorbate contents during freezing and recovery were significantly higher in cold-acclimated plants than in non-acclimated ones. Activities of peroxidase, ascorbate peroxidase and glutathione reductase were also higher in cold-acclimated plants than non-acclimated plants during freezing treatment. However, there was no significant difference between cold-acclimated plants and the control plants in catalase activity. It may be assumed that cold acclimation induced H2O2 production, which in turn enhanced activities of antioxidative enzymes and synthesis of antioxidants, resulting in alleviation of oxidative stress caused by freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号