首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of ATP hydrolysis in myofibrils can be studied by following the time course of tryptophan fluorescence. Stoichiometric quantities of ATP produce an enhancement of the tryptophan fluorescence in stirred suspensions of rabbit psoas myofibrils at pCa greater than 7. Approximately 1 mol of ATP/myosin head is required to obtain the maximum fluorescence enhancement of 4-6%. Upon the addition of quantities of ATP greater than 1 mol/mol of myosin head, the fluorescence rapidly increases to a steady state, which lasts for a period that is proportional to the amount of ATP added. The fluorescence then decays to the initial level with a half-time of approximately 40 s at 20 degrees C. Hydrolysis of [gamma-32P]ATP at pCa greater than 7 in myofibrils has an initial burst of approximately 0.7 mol/mol of myosin head that is followed by a constant rate of hydrolysis. The duration of the steady state hydrolysis is identical to the duration of the enhancement of tryptophan fluorescence. A lower limit of 5 X 10(5) M-1 S-1 was obtained for the second order rate constant of the fluorescence enhancement by ATP. At pCa of 4, the duration of the fluorescence enhancement is one-tenth to one-twentieth as long as at pCa greater than 7; this is consistent with the increased steady state rate of ATP hydrolysis at higher calcium concentrations. The time course of the fluorescence enhancement observed in myofibrils during ATP hydrolysis is qualitatively and quantitatively similar to that observed with actomyosin-S1 in solution. These results suggest that the kinetic mechanism of ATP hydrolysis that has been well established by studies of actomyosin-S1 in solution also occurs in myofibrils.  相似文献   

2.
The influence of phalloidin on the ATP hydrolysis associated with actin polymerization was investigated. Whereas in the absence of phalloidin actin-bound ATP was totally hydrolyzed during polymerization, ATP hydrolysis was not complete after actin polymerization in the presence of phalloidin: 5-10% of ATP remained unhydrolyzed and disappeared only after 2 days.  相似文献   

3.
4.
We have characterized various structural and enzymatic properties of the (68K-30K)-S-1 derivative obtained by thrombic cleavage [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry (preceding paper in this issue)]. The far-ultraviolet CD spectra and thiol reactivity measurements indicated an unchanged overall polypeptide conformation of the enzyme whereas the CD spectra in the near-ultraviolet region suggested a local change in the environments of phenylalanine side chains; the latter finding was rationalized by considering the existence of about five of these amino acids in the vicinity of the cleavage sites. When the binding of Mg2+-ATP and Mg2+-ADP to the derivative was assessed by CD spectroscopy, distinct spectra were obtained with the two nucleotides as with native subfragment 1 (S-1), but some spectral features were unique to the nicked S-1. Stern-Volmer fluorescence quenching studies using acrylamide and the analogues 1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenosine 5'-diphosphate indicated that the complexes formed with the modified S-1 have a solute quencher accessibility close to that observed for the complexes with the normal S-1. However, in contrast to the parent enzyme, the thrombin-cut S-1 was unable to bind irreversibly Mg2+-ATP, nor did it form a stable Mg2+-ADP-sodium vanadate complex or achieve the entrapping of Mg2+-ADP after cross-linking of SH1 and SH2 with N,N'-p-phenylenedimaleimide. Additionally, the amplitude of the Pi burst was very low, indicating that the inactivation of the proteolyzed S-1 was linked to the suppression of the hydrolysis step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
We have measured the conventional electron paramagnetic resonance (EPR) spectrum of spin-labeled myosin filaments as a function of the nucleotide occupancy of the active site of the enzyme. The probe used was 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (IASL), which reacts specifically with sulfhydryl 1 of the myosin head. In the absence of nucleotide, the probe remains strongly immobilized (rigidly attached to the myosin head) so that no nanosecond rotational motions are detectable. When MgADP is added to IASL-labeled myosin filaments (T = 20 degrees C), the probe mobility increases slightly. During steady-state MgADP hydrolysis (T = 20 degrees C), the probe undergoes large-amplitude nanosecond rotational motion. These results are consistent with previous studies of myosin monomers, heavy meromyosin, and myosin subfragment 1. Isoclinic points observed in overlays of sequential EPR spectra recorded during ATP hydrolysis strongly suggest that the probes fall into two motional classes, separated by approximately an order of magnitude in effective rotational correlation time. Both of the observed states are distinct from the conformation of myosin in the absence of nucleotides, and the spectrum of the less mobile population is indistinguishable from that observed in the presence of MgADP. The addition of ADP and vanadate to IASL-myosin gives rise to two motional classes virtually identical with those observed in the presence of ATP, but the relative concentrations of the spin populations are significantly different. We have quantitated the percentage of myosin in each motional state during ATP hydrolysis. The result agrees well with the predicted percentages in the two predominant chemical states in the myosin ATPase cycle. Spectra obtained in the presence of nucleotide analogues permit us to assign the conformational states to specific chemical states. We propose that the two motional classes represent two distinct local conformations of myosin that are in exchange with one another during the ATP hydrolysis reaction cycle.  相似文献   

7.
K Yamamoto 《Biochemistry》1989,28(13):5573-5577
Actin was cross-linked to myosin subfragment 1 with a water-soluble carbodiimide both in the presence and in the absence of ATP, and the cross-linking of the N-terminal acidic sequence of actin to the lysine-rich sequence (--KKGGKKK--) at the junction between the 50K and the 20K fragments of lysines in the lysine-rich sequence were compared between the resulting acto-22K fragment and the uncross-linked 22K fragment by using a protein sequencer. It was found that, in the presence of ATP, a very small amount of cross-linked product was produced and, in the product, only one lysine residue which lies closest to the 50K fragment mainly decreased in its amount as compared to the corresponding lysine residue in un-cross-linked 22K. In the absence of ATP, on the other hand, the amounts of all five lysine residues in acto-22K were about 60% those of the corresponding residues in 22K. The results suggest that, in the so-called weakly binding state, the N-terminal acidic sequence of actin interacts infrequently and only at restricted sites of the lysine-rich sequence but it interacts fully over the whole length in the rigor state.  相似文献   

8.
Onishi H  Mochizuki N  Morales MF 《Biochemistry》2004,43(13):3757-3763
Myosin is an ATP-hydrolyzing motor that is critical in muscle contraction. It is well established that in the hydrolysis that it catalyzes a water molecule attacks the gamma-phosphate of an ATP bound to its active site, but the details of these events have remained obscure. This is mainly because crystallographic search has not located an obvious catalytic base near the vulnerable phosphate. Here we suggest a means whereby this dilemma is probably overcome. It has been shown [Fisher, A. J., et al. (1995) Biochemistry 34, 8960-8972; Smith, C. A., and Rayment, I. (1996) Biochemistry 35, 5404-5417] that in an early event, Arg-247 and Glu-470 come together into a "salt-bridge". We suggest that in doing so they also position and orient two contiguous water molecules; one of these becomes the lytic water, perfectly poised to attack the bound gamma-phosphorus. Its hydroxyl moiety attacks the phosphorus, and the resulting proton transfers to the second water, converting it into a hydronium ion (as is experimentally observed). It is shown in this article how these central events of the catalysis are consistent with the behavior of several residues of the neighboring region.  相似文献   

9.
10.
Muscle contraction can be activated by the binding of myosin heads to the thin filament, which appears to result in thin filament structural changes. In vitro studies of reconstituted muscle thin filaments have shown changes in tropomyosin-actin geometry associated with the binding of myosin subfragment 1 to actin. Further information about these structural changes was obtained with fluorescence-detected linear dichroism of tropomyosin, which was labeled at Cys 190 with acrylodan and incorporated into oriented ghost myofibrils. The fluorescence from three sarcomeres of the fibril was collected with the high numerical aperture objective of a microscope and the dichroic ratio, R (0/90 degrees), for excitation parallel/perpendicular to the fibril, was obtained, which gave the average probe dipole polar angle, Theta. For both acrylodan-labeled tropomyosin bound to actin in fibrils and in Mg2+ paracrystals, Theta congruent to 52 degrees +/- 1.0 degrees, allowing for a small degree of orientational disorder. Binding of myosin subfragment 1 to actin in fibrils did not change Theta; i.e., the orientation of the rigidly bound probe on tropomyosin did not change relative to the actin axis. These data indicate that myosin subfragment 1 binding to actin does not appreciably perturb the structure of tropomyosin near the probe and suggest that the geometry changes are such as to maintain the parallel orientation of the tropomyosin and actin axes, a finding consistent with models of muscle regulation. Data are also presented for effects of MgADP on the orientation of labeled myosin subfragment 1 bound to actin in myofibrils.  相似文献   

11.
Tryptic digestion of rabbit skeletal myofibrils at physiological ionic strength and pH results in cleavage of the myosin heavy chain at one site giving two bands (Mr = 200,000 and 26,000) on sodium dodecyl sulfate/polyacrylamide gels. Following addition of sodium pyrophosphate (to 1 mm) to dissociate the myosin heads from actin, tryptic proteolysis results in production of three bands, 160K2, 51K and 26K, with a 74K band appearing as a precursor of the 51K and 26K species. Under these conditions, there is insignificant cleavage of heavy chain to the heavy and light meromyosins. Trypsin-digested myofibrils yield the same amount of rod as native myofibrils when digested with papain. These results indicate that actin blocks tryptic cleavage of the myosin heavy chain at a site 74K from the N terminus. From measurements of the amount of 51K species formed by digestion of rigor fibers at various sarcomere lengths, we estimate that at least 95% of the myosin heads are bound to actin at 100% overlap of thick and thin filaments. Hence all myosin molecules can bind to actin, and consequently both heads of a myosin molecule can interact simultaneously with actin filaments under rigor conditions.  相似文献   

12.
13.
K Maruyama  A Weber 《Biochemistry》1972,11(16):2990-2998
  相似文献   

14.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

15.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to study the effect of ATP on the rotational dynamics of spin-labeled myosin heads crosslinked to actin (XLAS1). We have previously shown that ATP induces microsecond rotational motions in activated myofibrils or muscle fibers, but the possibility remained that the motion occurred only in the detached phase of the cross-bridge cycle. The addition of ATP to the crosslinked preparation has been shown to be a model system for active cross-bridges, presumably providing an opportunity to measure the motion in the attached state, without interference from unattached heads. In the absence of ATP, XLAS1 had very little microsecond rotational mobility, yielding a spectrum identical to that observed for uncrosslinked acto-S1. This suggests that all of the labeled S1 forms normal rigor complexes when crosslinked to actin. The addition of 5 mM ATP greatly increased the microsecond rotational mobility of XLAS1, and the effects were reversed upon depletion of ATP. The most plausible explanation for these results is that myosin heads undergo microsecond rotational motion while attached actively to actin during steady state ATPase activity. These results have important implications for the interpretation of spectroscopic data obtained during muscle contraction.  相似文献   

16.
Conventional myosin is representative of biomolecular motors in which the hydrolysis of adenosine triphosphate (ATP) is coupled to large-scale structural transitions both in and remote from the active site. The mechanism that underlies such “mechanochemical coupling,” especially the causal relationship between hydrolysis and allosteric structural changes, has remained elusive despite extensive experimental and computational analyses. In this study, using combined quantum mechanical and molecular mechanical simulations and different conformations of the myosin motor domain, we provide evidence to support that regulation of ATP hydrolysis activity is not limited to residues in the immediate environment of the phosphate. Specifically, we illustrate that efficient hydrolysis of ATP depends not only on the proper orientation of the lytic water but also on the structural stability of several nearby residues, especially the Arg238-Glu459 salt bridge (the numbering of residues follows myosin II in Dictyostelium discoideum) and the water molecule that spans this salt bridge and the lytic water. More importantly, by comparing the hydrolysis activities in two motor conformations with very similar active-site (i.e., Switches I and II) configurations, which distinguished this work from our previous study, the results clearly indicate that the ability of these residues to perform crucial electrostatic stabilization relies on the configuration of residues in the nearby N-terminus of the relay helix and the “wedge loop.” Without the structural support from those motifs, residues in a closed active site in the post-rigor motor domain undergo subtle structural variations that lead to consistently higher calculated ATP hydrolysis barriers than in the pre-powerstroke state. In other words, starting from the post-rigor state, turning on the ATPase activity requires not only displacement of Switch II to close the active site but also structural transitions in the N-terminus of the relay helix and the “wedge loop,” which have been proposed previously to be ultimately coupled to the rotation of the converter subdomain 40 Å away.  相似文献   

17.
Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.  相似文献   

18.
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis.  相似文献   

19.
The rate of actin polymerization, the rate of nucleotide splitting and the rate of the nucleotide exchange have been measured simultaneously. Correlation of these three measurements demonstrated that nucleotide splitting and exchange were mainly connected with the association and dissociation reactions of actin protomers at the ends of actin filaments and were not caused by release and rebinding of nucleotide molecules at the binding sites along the filament. The observation made by others that the nucleotide exchange was accelerated in the presence of ATP was explained by the translocational head-to-tail polymerization of actin: Due to the simultaneous lengthening of the filament at one end and shortening at the other, nucleotide molecules are incorporated at one end and released at the other. In the absence of ATP, where the head-to-tail polymerization mechanism was not operative nucleotide exchange was brought about by the slow process of length fluctuation of polymers.  相似文献   

20.
Previous work from our laboratory indicated that pancreatic islets contain myosin light chain kinase, a calcium- and calmodulin-activated enzyme. This enzyme catalyzes phosphorylation of myosin which, in tissues containing smooth muscle, is believed to permit the ATPase of myosin to be activated by actin. The current report shows that incubating islet cytosol with ATP under conditions that should permit phosphorylation of myosin markedly enhances islet myosin ATPase activity in the presence of actin. It has been suggested that contractile proteins power insulin granule movements in the beta cell. Phosphorylation of myosin may be one of the means of coupling stimuli to insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号