首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas reinhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cyanophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thunbergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchantia polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed. Received: 6 June 1997 / Accepted: 24 July 1997  相似文献   

2.
The nucleotide sequences of two segments of 6,737 ntp and 258 ntp of the 18.4-kb circular mitochondrial (mt) DNA molecule of the soft coral Sarcophyton glaucum (phylum Cnidaria, class Anthozoa, subclass Octocorallia, order Alcyonacea) have been determined. The larger segment contains the 3′ 191 ntp of the gene for subunit 1 of the respiratory chain NADH dehydrogenase (ND1), complete genes for cytochrome b (Cyt b), ND6, ND3, ND4L, and a bacterial MutS homologue (MSH), and the 5′ terminal 1,124 ntp of the gene for the large subunit rRNA (l-rRNA). These genes are arranged in the order given and all are transcribed from the same strand of the molecule. The smaller segment contains the 3′ terminal 134 ntp of the ND4 gene and a complete tRNAf-Met gene, and these genes are transcribed in opposite directions. As in the hexacorallian anthozoan, Metridium senile, the mt-genetic code of S. glaucum is near standard: that is, in contrast to the situation in mt-genetic codes of other invertebrate phyla, AGA and AGG specify arginine, and ATA specifies isoleucine. However, as appears to be universal for metazoan mt-genetic codes, TGA specifies tryptophan rather than termination. Also, as in M. senile the mt-tRNAf-Met gene has primary and secondary structural features resembling those of Escherichia coli initiator tRNA, including standard dihydrouridine and TψC loop sequences, and a mismatched nucleotide pair at the top of the amino-acyl stem. The presence of a mutS gene homologue, which has not been reported to occur in any other known mtDNA, suggests that there is mismatch repair activity in S. glaucum mitochondria. In support of this, phylogenetic analysis of MutS family protein sequences indicates that the S. glaucum mtMSH protein is more closely related to the nuclear DNA-encoded mitochondrial mismatch repair protein (MSH1) of the yeast Saccharomyces cerevisiae than to eukaryotic homologues involved in nuclear function, or to bacterial homologues. Regarding the possible origin of the S. glaucum mtMSH gene, the phylogenetic analysis results, together with comparative base composition considerations, and the absence of an MSH gene in any other known mtDNA best support the hypothesis that S. glaucum mtDNA acquired the mtMSH gene from nuclear DNA early in the evolution of octocorals. The presence of mismatch repair activity in S. glaucum mitochondria might be expected to influence the rate of evolution of this organism's mtDNA. Received: 13 January 1997 / Accepted: 23 September 1997  相似文献   

3.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

4.
The complete mitochondrial genome sequence of the pig, Sus scrofa, was determined. The length of the sequence presented is 16,679 nucleotides. This figure is not absolute, however, due to pronounced heteroplasmy caused by variable numbers of the motif GTACACGTGC in the control region of different molecules. A phylogenetic study was performed on the concatenated amino acid and nucleotide sequences of 12 protein-coding genes of the mitochondrial genome. The analysis identified the pig (Suiformes) as a sister group of a cow/whale clade, making Artiodactyla paraphyletic. The split between pig and cow/whale was molecularly dated at 65 million years before present. Received: 2 December 1997 / Accepted: 20 February 1998  相似文献   

5.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

6.
7.
The complete mitochondrial genome was obtained from a microchiropteran bat, Artibeus jamaicensis. The presumptive amino acid sequence for the protein-coding genes was compared with predicted amino acid sequences from several representatives of other mammalian orders. Data were analyzed using maximum parsimony, maximum likelihood, and neighbor joining. All analyses placed bats as the sister group of carnivores, perissodactyls, artiodactyls, and cetaceans (e.g., 100% bootstrap value with both maximum parsimony and neighbor joining). The data strongly support a new hypothesis about the origin of bats, specifically a bat/ferungulate grouping. None of the analyses supported the superorder Archonta (bats, flying lemurs, primates, and tree shrews). Our hypothesis regarding the relationship of bats to other eutherian mammals is concordant with previous molecular studies and contrasts with hypotheses based solely on morphological criteria and an incomplete fossil record. The A. jamaicensis mitochondrial DNA control region has a complex pattern of tandem repeats that differs from previously reported chiropteran control regions. Received: 22 January 1998 / Accepted: 3 June 1998  相似文献   

8.
A full-length cytochrome b pseudogene was found in rodents; it has apparently been translocated from a mitochondrion to the nuclear genome in the subfamily Arvicolinae. The pseudogene (ψcytb) differed from its mitochondrial counterpart at 201 of 1143 sites (17.6%) and by four indels. Cumulative evidence suggests that the pseudogene has been translocated to the nucleus. Phylogenetic reconstruction indicates that the pseudogene arose before the diversification of M. arvalis/M. rossiaemeridionalis from M. oeconomus, but after the divergence of the peromyscine/sigmodontine/arvicoline clades some ∼10 MYA. Published rates of divergence between mitochondrial genes and their nuclear pseudogenes suggest that the translocation of this mitochondrial gene to the nuclear genome occurred some 6 MYA, in agreement with the phylogenetic evidence. Received: 16 January 1998 / Accepted: 18 July 1998  相似文献   

9.
We compared the codon usage of sequences of transposable elements (TEs) with that of host genes from the species Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae, and Homo sapiens. Factorial correspondence analysis showed that, regardless of the base composition of the genome, the TEs differed from the genes of their host species by their AT-richness. In all species, the percentage of A + T on the third codon position of the TEs was higher than that on the first codon position and lower than that in the noncoding DNA of the genomes. This indicates that the codon choice is not simply the outcome of mutational bias but is also subject to selection constraints. A tendency toward higher A + T on the third position than on the first position was also found in the host genes of A. thaliana, C. elegans, and S. cerevisiae but not in those of D. melanogaster and H. sapiens. This strongly suggests that the AT choice is a host-independent characteristic common to all TEs. The codon usage of TEs generally appeared to be different from the mean of the host genes. In the AT-rich genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Saccharomyces cerevisiae, the codon usage bias of TEs was similar to that of weakly expressed genes. In the GC-rich genome of D. melanogaster, however, the bias in codon usage of the TEs clearly differed from that of weakly expressed genes. These findings suggest that selection acts on TEs and that TEs may display specific behavior within the host genomes. Received: 2 May 2001 / Accepted: 29 October 2001  相似文献   

10.
Cryptomonads, small biflagellate algae, contain four different genomes. In addition to the nucleus, mitochondrion, and chloroplast is a fourth DNA-containing organelle the nucleomorph. Nucleomorphs result from the successive reduction of the nucleus of an engulfed phototrophic eukaryotic endosymbiont by a secondary eukaryotic host cell. By sequencing the chloroplast genome and the nucleomorph chromosomes, we identified a groEL homologue in the genome of the chloroplast and a related cpn60 in one of the nucleomorph chromosomes. The nucleomorph-encoded Cpn60 and the chloroplast-encoded GroEL correspond in each case to one of the two divergent GroEL homologues in the cyanobacterium Synechocystis sp. PCC6803. The coexistence of divergent groEL/cpn60 genes in different genomes in one cell offers insights into gene transfer from evolving chloroplasts to cell nuclei and convergent gene evolution in chlorophyll a/b versus chlorophyll a/c/phycobilin eukaryotic lineages. Received: 24 April 1998 / Accepted: 12 June 1998  相似文献   

11.
We previously reported the sequence of a 9260-bp fragment of mitochondrial (mt) DNA of the cephalopod Loligo bleekeri [J. Sasuga et al. (1999) J. Mol. Evol. 48:692–702]. To clarify further the characteristics of Loligo mtDNA, we have sequenced an 8148-bp fragment to reveal the complete mt genome sequence. Loligo mtDNA is 17,211 bp long and possesses a standard set of metazoan mt genes. Its gene arrangement is not identical to any other metazoan mt gene arrangement reported so far. Three of the 19 noncoding regions longer than 10 bp are 515, 507, and 509 bp long, and their sequences are nearly identical, suggesting that multiplication of these noncoding regions occurred in an ancestral Loligo mt genome. Comparison of the gene arrangements of Loligo, Katharina tunicata, and Littorina saxatilis mt genomes revealed that 17 tRNA genes of the Loligo mt genome are adjacent to noncoding regions. A majority (15 tRNA genes) of their counterparts is found in two tRNA gene clusters of the Katharina mt genome. Therefore, the Loligo mt genome (17 tRNA genes) may have spread over the genome, and this may have been coupled with the multiplication of the noncoding regions. Maximum likelihood analysis of mt protein genes supports the clade Mollusca + Annelida + Brachiopoda but fails to infer the relationships among Katharina, Loligo, and three gastropod species. Received: 9 May 2001 / Accepted: 3 October 2001  相似文献   

12.
The complete nucleotide sequences of the mitochondrial genomes were determined for the three pelagic chaetognaths, Sagitta nagae, Sagitta decipiens, and Sagitta enflata. The mitochondrial genomes of these species which were 11,459, 11,121, and 12,631 bp in length, respectively, contained 14 genes (11 protein-coding genes, one transfer RNA gene, and two ribosomal RNA genes), and were found to have lost 23 genes that are present in the typical metazoan mitochondrial genome. The same mitochondrial genome contents have been reported from the benthic chaetognaths belonging to the family Spadellidae, Paraspadella gotoi and Spadella cephaloptera. Within the phylum Chaetognatha, Sagitta and Spadellidae are distantly related, suggesting that the gene loss occurred in the ancestral species of the phylum. The gene orders of the three Sagitta species are markedly different from those of the other non-Chaetognatha metazoans. In contrast to the region with frequent gene rearrangements, no gene rearrangements were observed in the gene cluster encoding COII–III, ND1–3, srRNA, and tRNAmet. Within this conserved gene cluster, gene rearrangements were not observed in the three Sagitta species or between the Sagitta and Spadellidae species. The gene order of this cluster was also assumed to be the ancestral state of the phylum.  相似文献   

13.
Protein-tyrosine dephosphorylation is a major mechanism in cellular regulation. A large number of protein-tyrosine phosphatases is known from Eukarya, and more recently bacterial homologues have also been identified. By employing conserved sequence patterns from both eukaryotic and bacterial protein-tyrosine phosphatases, we have identified three homologous sequences in two of the four complete archaeal genomes. Two hypothetical open reading frames in the genome of Methanococcus jannaschii (MJ0215 and MJECL20) and one in the genome of Pyrococcus horikoshii (PH1732) clearly bear all the conserved residues of this family. No homologues were found in the genomes of Archaeoglobus fulgidus and Methanobacterium thermoautotrophicum. This is the first report of protein-tyrosine phosphatase sequences in Archaea. Received: 29 April 1998 / Accepted: 27 November 1998  相似文献   

14.
Genes with atypical G+C content and pattern of codon usage in a certain genome are possibly of exotic origin, and this idea has been applied to identify horizontal events. In this way, it was postulated that a total of 755 genes in the E. coli genome are relics of horizontal events after the divergence of E. coli from the Salmonella lineage 100 million years ago (Lawrence and Ochman, 1998). In this paper we propose a new way to study sequence composition more thoroughly. We found that although the 755 genes differ in composition from other genes in the E. coli genome, the difference is minor. If we accepted that these genes are horizontally transferred, then (1) it would be more likely that they were transferred from genomes evolutionarily closely related to E. coli; but (2) the dating method used by Lawrence and Ochman (1997, 1998) largely underestimated the average age of introduced sequences in the E. coli genome, in particular, most of the 755 genes should be introduced into E. coli before, instead of after, the divergence of E. coli from the Salmonella lineage. Our study reveals that atypical G+C content and pattern of codon usage are not reliable indicators of horizontal gene transfer events. Received: 27 September 2000 / Accepted: 9 April 2001  相似文献   

15.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   

16.
Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome. Received: 10 March 1996 / Accepted: 20 May 1997  相似文献   

17.
Multiple genome rearrangement methodology facilitates the inference of animal phylogeny from gene orders on the mitochondrial genome. The breakpoint distance is preferable to other, highly correlated but computationally more difficult, genomic distances when applied to these data. A number of theories of metazoan evolution are compared to phylogenies reconstructed by ancestral genome optimization, using a minimal total breakpoints criterion. The notion of unambiguously reconstructed segments is introduced as a way of extracting the invariant aspects of multiple solutions for a given ancestral genome; this enables a detailed reconstruction of the evolution of non-tRNA mitochondrial gene order. Received: 15 July 1998 / Accepted: 5 March 1999  相似文献   

18.

Background

Animal mitochondrial genomes are physically separate from the much larger nuclear genomes and have proven useful both for phylogenetic studies and for understanding genome evolution. Within the phylum Arthropoda the subphylum Crustacea includes over 50,000 named species with immense variation in body plans and habitats, yet only 23 complete mitochondrial genomes are available from this subphylum.

Results

I describe here the complete mitochondrial genome of the crustacean Squilla mantis (Crustacea: Malacostraca: Stomatopoda). This 15994-nucleotide genome, the first described from a hoplocarid, contains the standard complement of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding AT-rich region that is found in most other metazoans. The gene order is identical to that considered ancestral for hexapods and crustaceans. The 70% AT base composition is within the range described for other arthropods. A single unusual feature of the genome is a 230 nucleotide non-coding region between a serine transfer RNA and the nad1 gene, which has no apparent function. I also compare gene order, nucleotide composition, and codon usage of the S. mantis genome and eight other malacostracan crustaceans. A translocation of the histidine transfer RNA gene is shared by three taxa in the order Decapoda, infraorder Brachyura; Callinectes sapidus, Portunus trituberculatus and Pseudocarcinus gigas. This translocation may be diagnostic for the Brachyura. For all nine taxa nucleotide composition is biased towards AT-richness, as expected for arthropods, and is within the range reported for other arthropods. Codon usage is biased, and much of this bias is probably due to the skew in nucleotide composition towards AT-richness.

Conclusion

The mitochondrial genome of Squilla mantis contains one unusual feature, a 230 base pair non-coding region has so far not been described in any other malacostracan. Comparisons with other Malacostraca show that all nine genomes, like most other mitochondrial genomes, share a bias toward AT-richness and a related bias in codon usage. The nine malacostracans included in this analysis are not representative of the diversity of the class Malacostraca, and additional malacostracan sequences would surely reveal other unusual genomic features that could be useful in understanding mitochondrial evolution in this taxon.  相似文献   

19.
In this study, we analyzed the correlation between codon usage bias and Shine–Dalgarno (SD) sequence conservation, using complete genome sequences of nine prokaryotes. For codon usage bias, we adopted the codon adaptation index (CAI), which is based on the codon usage preference of genes encoding ribosomal proteins, elongation factors, heat shock proteins, outer membrane proteins, and RNA polymerase subunit proteins. To compute SD sequence conservation, we used SD motif sequences predicted by Tompa and systematically aligned them with 5′UTR sequences. We found that there exists a clear correlation between the CAI values and SD sequence conservation in the genomes of Escherichia coli, Bacillus subtilis, Haemophilus influenzae, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii, and no relationship is found in M. genitalium, M. pneumoniae, and Synechocystis. That is, genes with higher CAI values tend to have more conserved SD sequences than do genes with lower CAI values in these organisms. Some organisms, such as M. thermoautotrophicum, do not clearly show the correlation. The biological significance of these results is discussed in the context of the translation initiation process and translation efficiency. Received: 22 June 2000 / Accepted: 18 October 2000  相似文献   

20.
Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7–3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage. Received: 27 November 1996 / Accepted: 8 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号