首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60–500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires.  相似文献   

2.
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (相似文献   

3.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

4.
Although there are generalized conceptual models that predict how above and belowground biomass increase during secondary succession after abandonment from agriculture, there are few data to test these models for fine roots (defined as ≤2 mm diameter) in tropical forests. We measured live and dead fine roots (0–10 cm depth) in 18 plots of regenerating tropical dry forest in Costa Rica that varied in age from 5 to 60 yrs, as well as in soil properties. We predicted that both stand age and soil fertility would affect fine roots, with greater values in older forests on low fertility soils. Across two sampling dates and locations, live fine roots varied from 0.35 to 3.53 Mg/ha and dead roots varied from 0.15 to 0.93 Mg/ha. Surprisingly, there was little evidence that surface fine roots varied between sampling dates or in relation to stand age. By contrast, total, live, and dead fine roots averaged across sampling dates within plots were negatively correlated with a multivariate index of soil fertility (Pearson correlations coefficients were ?0.64, ?0.58, and ?0.68, respectively; < 0.01) and other individual edaphic variables including pH, silt, calcium, magnesium, nitrogen, and phosphorus. These results suggest that soil fertility is a more important determinant of fine roots than forest age in tropical dry forests in Costa Rica, and that one‐way these plant communities respond to low soil fertility is by increasing fine roots. Thus, simple conceptual models of forest responses to abandonment from agriculture may not be appropriate for surface fine roots.  相似文献   

5.
We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.  相似文献   

6.
Aim Carbon (C) and nitrogen (N) stoichiometry is a critical indicator of biogeochemical coupling in terrestrial ecosystems. However, our current understanding of C : N stoichiometry is mainly derived from observations across space, and little is known about its dynamics through time. Location Global secondary forests. Methods We examined temporal variations in C : N ratios and scaling relationships between N and C for various ecosystem components (i.e. plant tissue, litter, forest floor and mineral soil) using data extracted from 39 chronosequences in forest ecosystems around the world. Results The C : N ratio in plant tissue, litter, forest floor and mineral soil exhibited large variation across various sequences, with an average of 145.8 ± 9.4 (mean ± SE), 49.9 ± 3.0, 38.2 ± 3.1 and 18.5 ± 0.9, respectively. In most sequences, the plant tissue C : N ratio increased significantly with stand age, while the C : N ratio in litter, forest floor and mineral soil remained relatively constant over the age sequence. N and C scaled isometrically (i.e. the slope of the relationship between log‐transformed N and C is not significantly different from 1.0) in litter, forest floor and mineral soil both within and across sequences, but not in plant tissue either within or across sequences. The C : N ratio was larger in coniferous forests than in broadleaf forests and in temperate forests than in tropical forests. In contrast, the N–C scaling slope did not reveal significant differences either between coniferous and broadleaf forests or between temperate and tropical forests. Main conclusions These results suggest that C and N become decoupled in plants but remain coupled in other ecosystem components during stand development.  相似文献   

7.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

8.
西双版纳热带季节雨林与橡胶林土壤呼吸   总被引:32,自引:0,他引:32       下载免费PDF全文
季节雨林和橡胶(Hevea brasiliensis)林是西双版纳热带森林生态系统中原始林和大面积种植人工林的两种代表类型。热带季节雨林层次结构复杂,多样性丰富,而橡胶林结构简单,乔木层只有橡胶树1种。应用碱吸收法,研究了这两种植被类型土壤呼吸速率、地下5 cm土壤温度、气温和土壤含水率的季节变化规律,以及土壤呼吸速率与地下5 cm土壤温度、气温和土壤含水率的关系。结果表明:1)季节雨林和橡胶林土壤呼吸速率、土壤温度、气温和土壤含水率都有明显的季节变化,而且两种林型的变化趋势基本一致;2)季节雨林和橡胶林土壤呼吸速率与地下5 cm土壤温度和气温之间具有显著的指数相关关系,显著水平达1%,与地下5 cm温度的相关性(r2分别为0.87和0.82)明显高于与气温的相关性(r2分别是0.80和0.72);3)季节雨林和橡胶林土壤呼吸速率与土壤含水率具有显著的线性相关(r2分别是0.73和0.63),显著水平达1%;4)橡胶林的土壤呼吸速率明显高于季节雨林,这与两种林型的结构有关;5)季节雨林和橡胶林土壤呼吸的Q10分别为2.16和2.18,比文献报道的热带土壤的Q10(1.96)稍高。  相似文献   

9.
* It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, samples were collected from plots that differed in fertility and above-ground biomass, and fine roots, AM hyphae and total soil nutrients were measured. * Among sites, total fine root mass varied by a factor of three, from 237+/-19 g m-2 in Costa Rica to 800+/-116 g m-2 in Brazil (0-40 cm depth). Both root mass and length were negatively correlated to soil nitrogen and phosphorus, but AM hyphae were not related to nutrients, root properties or above-ground biomass. * These results suggest that understanding how soil fertility affects fine roots is an additional factor that may improve the representation of root functions in global biogeochemical models or biome-wide averages of root properties in tropical forests.  相似文献   

10.
The adequate protection and sustainable management of a tropical rain forest requires a good knowledge of its biodiversity. Although considerable parts of Guyana's North-West District have been allocated as logging concessions, little has been published on the forest types present in this region. The present paper reviews the floristic composition, vegetation structure, and diversity of well-drained mixed and secondary forests in northwest Guyana. Trees, shrubs, lianas, herbs and hemi-epiphytes were inventoried in four hectare plots: two in primary forests, one in a 20-year-old secondary forest and one in a 60-year-old secondary forest. The primary forests largely corresponded with the Eschweilera–Licania association described by Fanshawe, although there were substantial variations in the floristic composition and densities of dominant species. The late-succession forest contained the highest number species and was not yet dominated by Lecythidaceae and Chrysobalanaceae. There is a need for updating the existing vegetation maps of northwest Guyana, as they were based on limited information. Large-scale forest inventories may provide a fair indication of species dominance and forest composition, but do not give a reliable insight in floristic diversity. Although previous reports predicted a general low diversity for the North-West District, the forests plots of this research were among the most diverse studied in Guyana so far. These results will hopefully influence the planning of protected areas in Guyana.  相似文献   

11.
Forest inventories are largely neglected in the debate of national parks selection in Guyana (and probably elsewhere). Because taxonomic data are often scant and biased towards are as of high collecting effort, large scale forest inventory data can be a useful tool adding to a knowledge database for forests. In this paper the use of forest inventories to select national parks in Guyana is assessed. With the data of a large scale inventory five forest regions could be distinguished and two were added on the base of existing other information. Forest composition in Guyana is largely determined by geology at a national level and soil type at regional level. Species diversity is higher in the south of Guyana, possibly due to higher disturbance and is also higher on the better soils. It is concluded that a selection of national parks in Guyana should include a sample of all seven regions, including as much soil variation as possible. Because of land use conflicts in central Guyana, this area is in need of quick attention of Guyana's policy makers.  相似文献   

12.
Cusack  Daniela F.  Turner  Benjamin L. 《Ecosystems》2021,24(5):1075-1092

Humid tropical forests contain some of the largest soil organic carbon (SOC) stocks on Earth. Much of this SOC is in subsoil, yet variation in the distribution of SOC through the soil profile remains poorly characterized across tropical forests. We used a correlative approach to quantify relationships among depth distributions of SOC, fine root biomass, nutrients and texture to 1 m depths across 43 lowland tropical forests in Panama. The sites span rainfall and soil fertility gradients, and these are largely uncorrelated for these sites. We used fitted β parameters to characterize depth distributions, where β is a numerical index based on an asymptotic relationship, such that larger β values indicate greater concentrations of root biomass or SOC at depth in the profile. Root β values ranged from 0.82 to 0.95 and were best predicted by soil pH and extractable potassium (K) stocks. For example, the three most acidic (pH?<?4) and K-poor (<?20 g K m?2) soils contained 76?±?5% of fine root biomass from 0 to 10 cm depth, while the three least acidic (pH?>?6.0) and most K-rich (>?50 g K m?2) soils contained only 41?±?9% of fine root biomass at this depth. Root β and SOC β values were inversely related, such that a large fine root biomass in surface soils corresponded to large SOC stocks in subsoils (50–100 cm). SOC β values were best predicted by soil pH and base cation stocks, with the three most base-poor soils containing 34?±?8% of SOC from 50 to 100 cm depth, and the three most base-rich soils containing just 9?±?2% of SOC at this depth. Nutrient depth distributions were not related to Root β or SOC β values. These data show that large surface root biomass stocks are associated with large subsoil C stocks in strongly weathered tropical soils. Further studies are required to evaluate why this occurs, and whether changes in surface root biomass, as may occur with global change, could in turn influence SOC storage in tropical forest subsoils.

  相似文献   

13.
Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.  相似文献   

14.
城市化梯度上亚热带常绿阔叶林土壤有机碳及其组分特征   总被引:2,自引:0,他引:2  
习丹  旷远文 《应用生态学报》2018,29(7):2149-2155
以珠江三角洲城区(广州)、近郊(鼎湖山)及远郊(怀集)梯度上的亚热带常绿阔叶林为对象,研究不同土层土壤总有机碳、惰性有机碳、活性有机碳(易氧化有机碳、微生物生物量碳和水溶性有机碳)沿城市化梯度的变化,分析城市化对森林土壤有机碳的影响.结果表明: 0~5 cm土层土壤总有机碳和惰性有机碳含量均在城市化梯度上差异不显著,在5~60 cm土层,土壤总有机碳含量在远郊森林显著高于近郊和城区森林,而惰性有机碳含量在近郊森林最高,城区与远郊森林差异不显著.易氧化有机碳含量在近郊森林显著低于远郊(0~60 cm)和城区(0~10 cm)森林,微生物生物量碳含量在城区森林显著低于近郊和远郊森林,而水溶性有机碳含量在近郊森林(0~10 cm)显著低于城区森林.在0~20 cm土层,城区、远郊森林土壤活性有机碳占总有机碳的比例显著高于近郊森林,而惰性有机碳占总有机碳的比例在远郊森林最低;近郊与城区森林惰性有机碳占总有机碳的比例仅在5~10 cm差异显著.城市化增加了土壤活性碳组分,降低稳定性碳组分,不利于总有机碳积累,远郊森林土壤对城市化的响应更敏感.  相似文献   

15.
Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre‐Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro‐edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source (<3 km), occurring mainly in flood‐free ombrophilous forests (3.46 ± 5.22 Mg PyC/ha). The vertical distribution of PyC in the deeper layers of the soil (> 50 cm) in seasonal forests was limited by hydro‐edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro‐edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon.  相似文献   

16.
Abstract. The soil seed bank was investigated in four dry Afromontane forests of Ethiopia. At least 167 plant species were identified in the 0–9 cm soil layer with total densities ranging between 12 300 and 24 000 seeds/m2. Herbs were represented with the largest numbers of species and seeds in the seed bank, while the contribution of tree species was generally low. The overall vertical distribution of seeds was similar at all sites with the highest densities occurring in the upper three cm of soil and gradually decreasing densities with increasing depth. Relatively high densities also occurred in the litter layer. There were large differences in depth distribution between species, suggesting differences in seed longevity. A large number of species in dry Afromontane forests evidently store quantities of seeds in the soil and this is in contrast to the situation in most tropical rain forests, dry lowland forests and savannas, where both the number of seeds and the number of species are relatively small. It is possible that the strongly seasonal and unpredictable climate of this region may have selected for high levels of dormancy, and that herb regeneration is associated with small scale disturbance. The fact that most of the dominant tree species do not accumulate seeds in the soil suggests that their regeneration from seed would be unlikely if mature individuals disappeared. Most tree species have relatively large seeds and poor long-distance dispersal; this implies that restoration of Afromontane forests after destruction would be difficult. Since there is a diverse seed bank of the ground flora, this component of the vegetation would have a better chance of reestablishing. However, because most cleared forest land is used for agricultural crop production, it is probable that the seed bank will be depleted in only a few years. Therefore, the future of the Afromontane forest flora seems to depend on the successful conservation of the few fragments of remaining natural forest.  相似文献   

17.
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.  相似文献   

18.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long‐term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty‐nine soil cores to 1‐m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha?1 (2.24 ± 1.41 Mg C ha?1). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0–30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65–286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2–2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models.  相似文献   

20.
武夷山不同林龄甜槠林土壤呼吸特征及影响因素   总被引:1,自引:0,他引:1  
为揭示中亚热带常绿阔叶林群落优势种一甜槠天然林不同林龄林下土壤呼吸(Soil respiration,RS)差异及影响因素,采用LI-8100开路式土壤碳通量系统对武夷山自然保护区不同林龄(18、36、54、72 a)天然甜槠林进行了1年的野外原位测定。结果表明:(1)不同林龄甜槠林RS季节动态呈现明显的单峰趋势,林龄对冬季RS影响并不显著(P>0.05),秋季18 a甜槠林RS与其他3种林龄差异显著(P<0.05),林龄对土壤含水率的季节变化没有显著影响(P>0.05);(2)不同林龄甜槠林5 cm深土壤温度与RS拟合R2明显高于土壤含水率与RS拟合R2,随着林龄增大,RS温度敏感性指数Q10值呈上升趋势,依次为1.551、1.589、1.640、1.664,且54、72 a甜槠林RS温度敏感性指数Q10值显著高于18、36 a(P<0.05);(3)土壤含水率与5 cm深土壤温度共同解释了RS变异的86%—90.3%;0—60 cm土层根系生物量与5 cm深土壤温度共同解释了RS变异的88.3%—91.8%,由此可见,生物因子与非生物因子双因素拟合可以更好地解释不同林龄RS差异。在对未来森林植被土壤呼吸及碳汇功能进行研究时,应在考虑林龄及季节差异的基础上,加强对生物因子的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号