首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Otolith analyses were used to back-calculate young-of-the-year (YOY) yellow perch Perca flavescens hatch-date estimates to interpret broad length distributions observed within a small Great Lake, Lake St. Clair, and a small inland lake, Lake Opinicon, during 1998. For the Great Lake, the earliest observed hatch date occurred 2 weeks after suitable water temperatures and latest hatch dates occurred the same week temperatures were considered too warm for spawning. For the inland lake, the earliest hatch date occurred 4 weeks after suitable water temperatures and the latest hatch dates occurred 2 weeks after the water temperatures were considered too warm for spawning. It is inferred that spawning in each lake had a duration of >9 weeks. This suggests that natural perch populations can protract their spawning season opportunistically under the appropriate environmental cues. During 1998, these cues involved a shortened winter, earlier spring, and slow warming to typical summer temperatures, caused by the El Niño-Southern Oscillation. Time of YOY hatch determined the absolute opportunity for growth and resulted in a match or mismatch with optimal foraging conditions and contributed to the development of the observed YOY length distributions.  相似文献   

2.
  总被引:7,自引:0,他引:7  
Climatic variation associated with the North Atlantic Oscillation (NAO) and El Niño‐Southern Oscillation (ENSO) has a widespread influence on the population dynamics of many organisms worldwide. While previous analyses have related the dynamics of northern ungulates to the NAO, there has been no comparable assessment for the species rich assemblages of tropical and subtropical Africa. Census records for 11 ungulate species in South Africa's Kruger National Park over 1977–96 reveal severe population declines by seven species, which were inadequately explained by indices of ENSO or its effects on annual rainfall totals. An additional influence was an extreme reduction in dry season rainfall, concurrent with and perhaps related to a regional temperature rise, possibly a signal of global warming. Boundary fencing now restricts range shifts by such large mammals in response to climatic variation. Our models project near extirpation of three ungulate species from the park's fauna should these climatic conditions recur.  相似文献   

3.
    
We assess the differential impact of logging and ENSO (El Niño Southern Oscillation)-induced disturbance on the relative butterfly abundance and species richness of range-restricted and widespread species within the island of Borneo. Relative abundance and species richness were assessed using rarefaction and species accumulation curves in unburned isolates surrounded by burned forest, the burned forest itself, and continuous forest unaffected by ENSO-induced disturbance in addition to logged and unlogged landscapes in unburned forest. The relative abundance of endemics was significantly higher in unlogged forest than logged forest and significantly higher in unburned forest than burned forest. Rarefied species richness of range categories was similar (Bornean endemics) or higher (other categories) in selectively logged than unlogged forest. In contrast, rarefied species richness of range-restricted species was highest in continuous forest, intermediate in unburned isolates, and lowest in burned forest. Only two individuals of a single Bornean endemic species were found in all the burned forest. Although species richness was higher in all range categories in continuous forest than in unburned isolates and in burned forest, the difference was most pronounced for range-restricted species. Logging and ENSO-induced fires thus have contrasting effects on range-restricted species. While both increase the relative abundance of widely distributed species at the expense of range-restricted species, only ENSO-induced disturbance lowers the rarefied number of restricted range species. Our research highlights the threat that severe ENSO events pose to geographically restricted classes of biodiversity.  相似文献   

4.
    
Fire histories were compared between the south-western United States and northern Patagonia, Argentina using both documentary records (1914–87 and 1938–96, respectively) and tree-ring reconstructions over the past several centuries. The two regions share similar fire–climate relationships and similar relationships of climatic anomalies to the El Niño–Southern Oscillation (ENSO). In both regions, El Niño events coincide with above-average cool season precipitation and increased moisture availability to plants during the growing season. Conversely, La Niña events correspond with drought conditions. Monthly patterns of ENSO indicators (southern oscillation indices and tropical Pacific sea surface temperatures) preceding years of exceptionally widespread fires are highly similar in both regions during the 20th century. Major fire years tend to follow the switching from El Niño to La Niña conditions. El Niño conditions enhance the production of fine fuels, which when desiccated by La Niña conditions create conditions for widespread wildfires. Decadal-scale patterns of fire occurrence since the mid-17th century are highly similar in both regions. A period of decreased fire occurrence in both regions from c. 1780–1830 coincides with decreased amplitude and/or frequency of ENSO events. The interhemispheric synchrony of fire regimes in these two distant regions is tentatively interpreted to be a response to decadal-scale changes in ENSO activity. The ENSO–fire relationships of the south-western USA and northern Patagonia document the importance of high-frequency climatic variation to fire hazard. Thus, in addition to long-term trends in mean climatic conditions, multi-decadal scale changes in year-to-year variability need to be considered in assessments of the potential influence of climatic change on fire regimes.  相似文献   

5.
1. Increases in global temperatures have created concern about effects of climatic variability on populations, and climate has been shown to affect population dynamics in an increasing number of species. Testing for effects of climate on population densities across a species' distribution allows for elucidation of effects of climate that would not be apparent at smaller spatial scales. 2. Using autoregressive population models, we tested for effects of the North Atlantic Oscillation (NAO) and the El Ni?o Southern Oscillation (ENSO) on annual population densities of a North American migratory landbird, the yellow-billed cuckoo Coccyzus americanus, across the species' breeding distribution over a 37-year period (1966-2002). 3. Our results indicate that both the NAO and ENSO have affected population densities of C. americanus across much of the species' breeding range, with the strongest effects of climate in regions in which these climate systems have the strongest effects on local temperatures. Analyses also indicate that the strength of the effect of local temperatures on C. americanus populations was predictive of long-term population decline, with populations that were more negatively affected by warm temperatures experiencing steeper declines. 4. Results of this study highlight the importance of distribution-wide analyses of climatic effects and demonstrate that increases in global temperatures have the potential to lead to additional population declines.  相似文献   

6.
    
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

7.
    
Recurrent fires are integral to the function of many ecosystems worldwide. The management of fire‐frequented ecosystems requires the application of fire at the appropriate frequency and seasonality, but establishing the natural fire regime for an ecosystem can be problematic. Historical records of fires are often not available, and surrogates for past fires may not exist. We suggest that the relationship between climate and fire can provide an alternative means for inferring past fire regimes in some ecosystems.  相似文献   

8.
1. We examined the influence of hydrologic seasonality on temporal variation of planktonic bacterial production (BP) in relatively undisturbed lowland rivers of the middle Orinoco basin, Venezuela. We sampled two clearwater and two blackwater rivers over 2 years for dissolved organic carbon (DOC), chlorophyll, phosphorus and bacterial abundance to determine their relationship to temporal variation in BP. 2. Dissolved organic carbon concentration was greater in blackwater (543–664 μm ) than in clearwater rivers (184–240 μm ), and was generally higher during periods of rising and high water compared with low water. Chlorophyll concentration peaked (3 μg L?1) during the first year of study when discharge was lowest, particularly in blackwater rivers. Soluble reactive phosphorus (SRP) was very low in the study rivers (<3.8 μg L?1) and concentration increased during low water. 3. Average BP was higher in clearwater (0.20–0.26 μg C L?1 h?1) than in blackwater rivers (0.14–0.17 μg C L?1 h?1), although mean bacterial abundance was similar among rivers (0.6–0.8 × 106 cells mL?1). 4. Periods of higher chlorophyll a concentration (low water) or flushing of terrestrial organic material (rising water) were accompanied by higher BP, while low BP was observed during the period of high water. 5. Interannual variation in BP was influenced by variations in discharge related to El Niño Southern Oscillation events. 6. Seasonal variation in BP in the study rivers and other tropical systems was relatively small compared with seasonal variation in temperate rivers and lakes. In addition to the low seasonal variation of temperature in the tropics, low overall human disturbance could result in less variation in the inputs of nutrients and carbon to the study rivers compared with more disturbed temperate systems.  相似文献   

9.
Vegetation productivity and desertification in sub‐Saharan Africa may be influenced by global climate variability attributable to the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO). Combined and individual effects of the NAO and ENSO indices revealed that 75% of the interannual variation in the area of Sahara Desert was accounted for by the combined effects, with most variance attributable to the NAO. Effects were shown in the latitudinal variation on the 200 mm isocline, which was influenced mostly by the NAO. The combined indices explained much of the interannual variability in vegetation productivity in the Sahelian zone and southern Africa, implying that both the NAO and ENSO may be useful for monitoring effects of global climate change in sub‐Saharan Africa.  相似文献   

10.
11.
  总被引:1,自引:0,他引:1  
Surface fires in Amazonian forests could contribute as much as 5% of annual carbon emissions from all anthropogenic sources during severe El Niño years. However, these estimates are based on short‐term figures of post‐burn tree mortality, when large thicker barked trees (representing a disproportionate amount of the forest biomass) appear to resist the fires. On the basis of a longer term study, we report that the mortality of large trees increased markedly between 1 and 3 years, more than doubling current estimates of biomass loss and committed carbon emissions from low‐intensity fires in tropical forests.  相似文献   

12.
1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.  相似文献   

13.
    
《Current biology : CB》2022,32(19):4264-4269.e3
  相似文献   

14.
    
Mounting evidence indicates large-scale climatic phenomena such as El Niño Southern Oscillation (ENSO) can overwhelm endogenous factors that govern the population dynamics of wild species. We add to this evidence by documenting an ENSO-related decline of large mammals in the Kumbhalgarh Wildlife Sanctuary, in Rajasthan, India. This event coincided with the drought of 2000, following two consecutive monsoon failures. Time series of biennial counts (1991–2005) shared a common feature: all 13 species declined in abundance from 1999 to 2001, with 11 species experiencing an apparent decline exceeding 25%. An ENSO index explained much of the variability in population size, apparently reflecting mass mortality and/or recruitment failure caused by the major 1998–2000 La Niña event, followed by a rapid rebound. ENSO apparently overwhelmed endogenous factors and synchronized the dynamics of the mammalian community. Our findings may prove to be symptomatic of geographically broad impacts of large-scale climate on the dynamics of terrestrial vertebrate communities, even in protected areas. Our findings reinforce the growing recognition that we should not overlook global-scale causal agents of ecological change.  相似文献   

15.
There is a limited knowledge about the El Niño–Southern Oscillation (ENSO) effects on the Amazon basin, the world's largest tropical rain forest and a major factor in the global carbon cycle. Seasonal precipitation in the Andean watershed annually causes a several month‐long inundation of the floodplains along the Amazon River that induces the formation of annual rings in trees of the flooded forests. Radial growth of trees is mainly restricted to the nonflooded period and thus the ring width corresponds to its duration. This allows the construction of a tree‐ring chronology of the long‐living hardwood species Piranhea trifoliata Baill. (Euphorbiaceae). El Niño causes anomalously low precipitation in the catchment that results in a significantly lower water discharge of the Amazon River and consequently in an extension of the vegetation period. In those years tree rings are significantly wider. Thus the tree‐ring record can be considered as a robust indicator reflecting the mean climate conditions of the whole Western Amazon basin. We present a more than 200‐year long chronology, which is the first ENSO‐sensitive dendroclimatic proxy of the Amazon basin and permits the dating of preinstrumental El Niño events. Time series analyses of our data indicate that during the last two centuries the severity of El Niño increased significantly.  相似文献   

16.
Present climate of northwestern South America and the southern Isthmus is detailed in terms of major hydro-climatic controls, supported by evidence from station records, reanalysis data and satellite information. In this tropical region, precipitation is the principal hydro-climatological variable to display great variability. The primary objective is to view the controls that operate at intra-seasonal to inter-decadal time scales. This is a topographical complex region whose climate influences range in provenance from the South Atlantic to the Canadian Prairies, and from the North Atlantic to the Eastern Pacific. The situation is further complicated by interactions and feedbacks, in time and space, between these influences, which are interconnected over various scales. The greatest single control on the annual cycle is the meridional migration of the Inter-tropical Convergence Zone and its pattern of associated trade winds. Consideration of these alone and their interaction with the Cordilleras of the Andes and Central America produce a variety of unimodal and bimodal regimes. Regionally, two low level jet streams, the westerly Choco jet (5°N) and the easterly San Andrés jet (12-14°N), and their seasonal variability, have tremendous significance, as do mesoscale convective storms and mid-latitude cold fronts from both the northern (“nortes”) and southern (“friagems”) hemispheres. There are many examples of hydro-climatological feedbacks within the region. Of these the most notable is the interaction between evaporation over the Amazon, precipitation onto the eastern Andes and streamflow from the headwaters of the Amazon. This is further compounded by the high percentages of recycled precipitation over large areas of the tropics and the potential impacts of anthropogenic modification of the land surface. The El Niño-Southern Oscillation phenomenon (ENSO) is the greatest single cause of interannual variability within the region, yet its effects are not universal in their timing, sign or magnitude. A set of regional physical connections to ENSO are established and their varying local manifestations are viewed in the context of the dominant precipitation generating mechanisms and feedbacks at that location. In addition, some potential impacts of longer run variations within the ocean-atmosphere system of the Atlantic are examined independently and in conjunction with ENSO. This review of the climatic controls and feedbacks in the region provides a spatial and temporal framework within which the highly complex set of factors and their interactions may be interpreted from the past.  相似文献   

17.
    
The genus Fontidessus Miller & Spangler, 2008 (Coleoptera: Dytiscidae: Hydroporinae: Bidessini) is reviewed. The genus now includes seven species with three previously described, and four new species described here: F. microphthalmus Miller & Montano, sp. n.; F. bettae Miller & Montano, sp. n.; F. christineae Miller & Montano, sp. n., and F. aquarupe Miller & Montano, sp. n. Each species is diagnosed and described, including the previously known species, based on new specimens and new information. Habitus, male genitalia and other diagnostic features are illustrated for each species. A key to the seven species is provided. Fontidessus species are unique to hygropetric habitats in the Guiana Shield craton of northern South American.  相似文献   

18.
The decomposition of leaf litter for five dominant plant species of a desert scrub in Baja California Sur, Mexico was investigated. We designed a factorial decomposition experiment using decomposition bags and the collected leaf-litter from Prosopis articulata, Jatropha cinerea, J. cuneata, Cyrtocarpa edulis, and Fouquieria diguetti. Factors, such as radiation exposure, rainfall, and the size of litter-consuming organisms were considered. The rates of litter decomposition were calculated for these plant species and the environmental conditions by using single exponential models. The initial concentration of nutrients (C, N, P, K, and Ca) and crude-fiber content of the leaf litter were determined. Our results show that the environmental heterogeneity generated by different conditions of radiation exposure and short-term rainfall patterns are the most relevant factors affecting decomposition processes in this Sonoran desert community. A species-specific pattern was observed in decay rates and mass-loss patterns. Decomposition rates varied from 0.0027 to 0.0201 depending on the species and exposure to different ecological conditions. The decay rates were higher under bare-soil conditions and during a wet year than under the shade provided by the canopy of nurse trees and during a dry year. The leaf litter of J. cuneata reincorporated to the soil more rapidly than that of P. articulata and C. edulis. Termites were the more important macroarthropods associated with litter decomposition, and their harvest distribution was independent of the resources distribution. The ecological significance of these results is discussed considering the extreme climatic conditions prevailing in this region.  相似文献   

19.
Species range boundaries are determined by a variety of factors of which climate is one of the most influential. As a result, climate change is expected to have a profound effect on organisms and ecosystems. However, the impacts of weather and climate are frequently modified by multiple nonclimatic factors. Therefore, the role of these nonclimatic factors needs to be examined in order to understand and predict future change. Marine intertidal ecosystems are exposed to heat extremes during warm, sunny, midday low tides. Thus, the timing of low tide, a nonclimatic factor, determines the potential contact intertidal invertebrates and algae have with heat extremes. We developed a method that quantifies the daily risk of high temperature extremes in the marine intertidal using solar elevations and spatially continuous tidal predictions. The frequency of 'risky days' is variable over time and space along the Pacific Coast of North America. Results show that at some sites the percentage of risky days in June can vary by 30% across years. In order to do a detailed analysis, we selected San Francisco as a study site. In San Francisco, May is the month with the greatest frequency of risky days, even though September is the month with the greatest frequency of high air temperature, ≥30 °C. These results indicate that marine intertidal organisms can be protected from high temperature extremes due to the timing of tides and local weather patterns. In addition, annual fluctuations in tides influence the frequency of intertidal zone exposures to high temperature extremes. Peaks in risk for heat extremes in the intertidal zone occur every 18 years, the length of the tidal epoch. These results suggest that nonclimatic variables can complicate predictions of shifts in species ranges due to climate change, but that mechanistic approaches can be used to produce predictions that include these factors.  相似文献   

20.
    
Aim The European green crab (Carcinus maenas) expanded dramatically after its introduction to the west coast of North America, spreading over 1000 km in < 10 years. We use samples of Carcinus maenas collected over time and space to investigate the genetic patterns underlying the species’ initial establishment and spread, and discuss our findings in the context of the species’ life history characteristics and demography. Location The central west coast of North America, encompassing California, Oregon, and Washington (USA) and British Columbia (Canada). Methods We collected 1040 total samples from 21 sites representing the major episodes of population establishment and expansion along the west coast of North America. Microsatellite markers were used to assess genetic diversity and structure at different time points in the species’ spread, to investigate connectivity between embayments and to estimate both short‐term effective population sizes and the number of original founders. Assignment testing was performed to determine the likely source of the introduction. Results Carcinus maenas in western North America likely derived from a single introduction of a small number of founders to San Francisco Bay, CA from the east coast of North America. Throughout its western North American range, the species experiences periodic migration between embayments, resulting in a minor loss of genetic diversity in more recently established populations versus the populations in the area of initial establishment. Main conclusions Low genetic diversity has not precluded the ability of C. maenas to successfully establish and spread on the west coast of North America. An efficient oceanographic transport mechanism combined with highly conducive life history traits are likely the major drivers of C. maenas spread. Evidence for a single introduction underscores the potential utility of early detection and eradication of high‐risk invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号