共查询到20条相似文献,搜索用时 0 毫秒
1.
Sequence effect on incision by (A)BC excinuclease of 4NQO adducts and UV photoproducts. 总被引:3,自引:2,他引:3
下载免费PDF全文

Nucleotide excision repair in Escherichia coli is initiated by (A)BC excinuclease, an enzyme which incises DNA on both sides of bulky adducts and removes the damaged nucleotide as a 12-13 base long oligomer. The incision pattern of the enzyme was examined using DNA modified by 4-nitroquinoline 1-oxide (4NQO) and UV light. Similar to the cleavage pattern of UV photoproducts and other bulky adducts, the enzyme incises the 8th phosphodiester bond 5' and 5th phosphodiester bond 3' to the 4NQO-modifed base, primarily guanine. The extent of DNA damage by these agents was determined using techniques which quantitatively cleave the DNA or stop at the site of the adduct. By comparison of the intensity of gel bands created by (A)BC excinuclease and the specific cleavage at the damaged site, the efficiency of (A)BC excinuclease incision at 13 different 4NQO-induced adducts and 13 different photoproducts was determined by densitometric scanning. In general, incisions made at 4NQO-induced adducts are proportional to the extent of damage, though the efficiency of cutting throughout the sequence tested varies from 25 to 75%. Incisions made at pyrimidine dimers are less efficient than at 4NQO-adducts, ranging from 13 to 65% incision relative to modification, though most are around 50%. The two (6-4) photoproducts within the region tested are incised more efficiently than any pyrimidine dimer. 相似文献
2.
The size of repair patch made by E. coli DNA polymerase I (Poll) following the removal of a thymine-psoralen monoadduct by E. coli (A)BC excinuclease was determined by using an M13mp19 DNA with a single psoralen monoadduct at the polylinker region. Incubation of this substrate with (A)BC excinuclease, Poll and a combination of 3 dnTP plus 1 dNTP(alpha S) for each nucleotide, and DNA ligase resulted in a repair patch with phosphorothioate linkages. The preferential hydrolysis of phosphorothioate bonds by heating in iodoethanol revealed a patch size--with minimal nick translation--equal in length to the 12 nucleotide gap generated by this excision nuclease. 相似文献
3.
Nucleotide excision repair in Escherichia coli is initiated by the UvrA, UvrB and UvrC proteins. UvrA is the damage recognition subunit, makes an A2B1 complex with the targeting subunit UvrB, and the complex binds to the lesion site; UvrA dissociates leaving behind a very stable UvrB-DNA complex that is recognized by the trigger subunit, UvrC, and the ensuing UvrB-UvrC heterodimer makes two incisions, one on either side of the lesion. Using electron microscopy, we investigated the structures of these early A, A-B intermediates on DNA containing ultraviolet light photoproducts. UvrA, which is known to bind to DNA as a dimer and produce a DNase I footprint of 33 base-pairs does not change the trajectory of DNA appreciably. The A2B1 complex clearly shows a bipartite structure and its effect on the trajectory of the DNA was not consistently straight or kinked. In contrast, the DNA in the preincision UvrB-DNA complex appears to be severely kinked; 43% of the molecules are bent by 80 degrees or more, with an average bending angle of 127 degrees. It appears that protein-induced bending is an important step on the pathway leading to excision of the damaged nucleotide by (A)BC excinuclease. 相似文献
4.
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks. 相似文献
5.
(A)BC excinuclease from Escherichia coli catalyzes the initial step of nucleotide excision repair. It recognizes and binds to many types of covalent modifications in DNA and incises the damaged strand on both sides of the lesion. We employed a variety of noncovalent DNA binding drugs to examine in vitro the mechanisms and the nature of the DNA-drug interactions responsible for two phenomena: inhibition of excision repair by caffeine and other noncovalent DNA binding compounds; incision of undamaged DNA produced by (A)BC excinuclease in the presence of the bisintercalating drug ditercalinium. All of the chemicals examined (e.g., actinomycin D, caffeine, ethidium bromide, and Hoechst 33258) inhibited incision of a covalent adduct by (A)BC excinuclease, and direct evidence is given for a common mechanism in which UvrA is depleted by binding to drug-undamaged DNA complexes. In the absence of significant amounts of undamaged DNA, another mechanism of inhibition was observed, in which enzyme bound to noncovalent drug-DNA complexes in the vicinity of the lesion prevents formation of preincision complexes at the lesion. Ditercalinium and unexpectedly all of the other drugs examined promoted the incision of undamaged DNA when the enzyme was present at high concentration. Thus, this activity contrary to previous assumptions is not unique to bisintercalators. Another unexpected finding was stimulation of incision at certain sites of photodamage in DNA produced by low concentrations of noncovalent DNA binding chemicals.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA 总被引:19,自引:0,他引:19
Escherichia coli (A)BC excinuclease is the major enzyme responsible for removing bulky adducts, such as pyrimidine dimers and 6-4 photoproducts, from DNA. Mutants deficient in this enzyme are extremely sensitive to UV and UV-mimetic agents, but not to oxidizing agents, or ionizing radiation which damages DNA in part by generating active oxygen species. DNA glycosylases and AP1 endonucleases play major roles in repairing oxidative DNA damage, and thus it has been assumed that nucleotide excision repair has no role in cellular defense against damage by ionizing radiation and oxidative damage. In this study we show that the E. coli nucleotide excision repair enzyme (A)BC excinuclease removes from DNA the two major products of oxidative damage, thymine glycol and the baseless sugar (AP site). We conclude that nucleotide excision repair is an important cellular defense mechanism against oxidizing agents. 相似文献
7.
Repair of N-methyl-N''-nitro-N-nitrosoguanidine-induced DNA damage by ABC excinuclease. 总被引:8,自引:1,他引:8
下载免费PDF全文

Escherichia coli has several overlapping DNA repair pathways which act in concert to eliminate the DNA damage caused by a diverse array of physical and chemical agents. The ABC excinuclease which is encoded by the uvrA, uvrB, and uvrC genes mediates both the incision and excision steps of nucleotide excision repair. Traditionally, this repair pathway has been assumed to be active against DNA adducts that cause major helical distortions. To determine the level of helical deformity required for recognition and repair by ABC excinuclease, we have evaluated the substrate specificity of this enzyme by using DNA damaged by N-methyl-N'-nitro-N-nitrosoguanidine. ABC excinuclease incised methylated DNA in vitro in a dose-dependent manner in a reaction that was ATP dependent and specific for the fully reconstituted enzyme. In vivo studies with various alkylation repair-deficient mutants indicated that the excinuclease participated in the repair of DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine. 相似文献
8.
J J Lin A M Phillips J E Hearst A Sancar 《The Journal of biological chemistry》1992,267(25):17693-17700
UvrB plays a central role in (A)BC excinuclease. To study its role in the incision reactions, conserved His and Asp residues in this subunit were mutagenized. All His and the majority of Asp mutants behaved like wild-type protein in vivo and in vitro. However, three mutants, D337A, D478A, and D510A, either completely or partially abolished UvrB activity. All three mutant proteins associate with UvrA normally but D337A and D510A were unable to bind to DNA specifically. The UvrB-D478A mutant bound to DNA specifically but failed to denature and kink the DNA. However, UvrB-D478A was efficiently loaded onto DNA preincised at the 3' site and promoted near-normal incision by UvrC at the 5' site. We propose that D478 is involved in bending DNA and catalysis of the 3' incision and that the 3' incision precedes the 5' incision. UvrB which is missing the carboxyl-terminal 43 amino acids binds to, and kinks DNA but is unable to make the 3' incision suggesting that it is missing a residue involved in catalysis. This residue was identified to be E639 by site-specific mutagenesis. 相似文献
9.
Activities and incision patterns of ABC excinuclease on modified DNA containing single-base mismatches and extrahelical bases 总被引:9,自引:0,他引:9
D C Thomas T A Kunkel N J Casna J P Ford A Sancar 《The Journal of biological chemistry》1986,261(31):14496-14505
ABC excision nuclease of Escherichia coli is a DNA repair enzyme that recognizes major helical distortions caused by bulky base adducts and incises on both sides of the adduct, thus removing the modified nucleotides in the form of a 12-13-base long oligomer. We tested the enzyme with substrates that contained unusual helical structures caused by single-base mismatches or one, three, or four extrahelical bases (loops). We find that the enzyme does not cut DNAs containing helical perturbations caused by these structures. However, when the mismatched or extrahelical bases are modified with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide, a reagent specific for unpaired G and T residues, the enzyme incises at the modified nucleotides in the regular manner. In addition, we find that when mismatches and loops are located near pyrimidine dimers and (6-4) photoproducts they do not inhibit incision at the photoproducts by the excinuclease but sometimes affect the incision pattern. Our results indicate that ABC excinuclease may be a useful enzymatic reagent to probe the structural changes caused by mismatches and deletions in DNA and provide additional information on the requirements for incision by this repair enzyme. 相似文献
10.
(A)BC excinuclease is the enzymatic activity resulting from the joint actions of UvrA, UvrB and UvrC proteins of Escherichia coli. The enzyme removes from DNA many types of adducts of dissimilar structures with different efficiencies. To understand the mechanism of substrate recognition and the basis of enzyme specificity, we investigated the interactions of the three subunits with two synthetic substrates, one containing a psoralen-thymine monoadduct and the other a thymine dimer. Using DNase I as a probe, we found that UvrA makes a 33 base-pair footprint around the psoralen-thymine adduct and that UvrA-UvrB make a 45 base-pair asymmetric footprint characterized by a hypersensitive site 11 nucleotides 5' to the adduct and protection mostly on the 3' side of the damage. Conditions that favor dissociation of UvrA from the UvrA-UvrB-DNA complex, such as addition of excess undamaged DNA to the reaction mixture, resulted in the formation of a 19 base-pair UvrB footprint. In contrast, a thymine dimer in a similar sequence context failed to elicit a UvrA, a UvrA-UvrB or UvrB footprint and gave rise to a relatively weak DNase I hypersensitive site typical of a UvrA-UvrB complex. Dissociation of UvrA from the UvrA-UvrB-DNA complex stimulated the rate of incision of both substrates upon addition of UvrC, leading us to conclude that UvrA is not a part of the incision complex and that it actually interferes with incision. The extent of incision of the two substrates upon addition of UvrC (70% for the psoralen adduct and 20% for the thymine dimer) was proportional to the extent of formation of the UvrA-UvrB-DNA (i.e. UvrB-DNA) complex, indicating that substrate discrimination occurs at the preincision step. 相似文献
11.
Escherichia coli UvrA, UvrB and UvrC proteins acting in concert remove the major ultraviolet light-induced photoproduct, the pyrimidine dimer, from DNA in the form of a 12 to 13-nucleotide long single-stranded fragment. In vivo data indicate that the UvrABC enzyme is also capable of removing other nucleotide diadducts as well as certain nucleotide monoadducts from DNA and initiating the repair process that leads to removal of interstrand crosslinks caused by some bifunctional chemical agents. We have determined the action mechanism of the enzyme on nucleotide monoadducts produced by 4'-hydroxymethyl-4,5',8-trimethylpsoralen and N-acetoxy-N-2-acetylaminofluorene. In both cases we find that the enzyme hydrolyzes the eighth phosphodiester bond 5' and the fifth phosphodiester bond 3' to the modified base. This cutting pattern is similar to that observed with diadduct substrate, the only difference being that while the enzyme incises the fourth or fifth phosphodiester bond 3' to the pyrimidine dimer it always hydrolyzes the fifth bond relative to monoadducts. Our results also suggest that ABC excinuclease cuts the same two phosphodiester bonds on both sides of a T whether that T has a psoralen monoadduct or is involved in psoralen-mediated interstrand crosslink. 相似文献
12.
CC-1065 is a large molecule that binds covalently to adenine residues of DNA in a sequence-specific manner and lies in the minor groove about four bases to the 5' side of the adducted residue. Using a reconstituted Escherichia coli nucleotide excision repair system, we have obtained data showing that the ABC excinuclease makes incisions both 5' and 3' to the CC-1065 adduct and that the incision activity is stimulated by the addition of helicase II and DNA polymerase I (and dNTPs). Our results with the CC-1065 adduct are consistent with the reported in vitro processing of other adducts (e.g., cisplatin, UV photoproducts) but do not agree with a recent study that reported anomalous processing of the CC-1065 adduct by ABC excinuclease and helicase II. Our results also imply that, in binding to damaged DNA, ABC excinuclease does not make important contacts in the minor groove four bases to the 5' side of the damaged residue. 相似文献
13.
Telomeric DNA sequences in human cells and those of other vertebrates consist of long d(TTAGGG) repeats. In somatic cells, telomeres shorten every cell division with shortening serving as a mitotic clock that counts cell divisions and ultimately results in cellular senescence. Telomere length is principally maintained by a ribonucleoprotein, telomerase. However, a non-negligible proportion of human cells use a recombination-based mechanism for telomere maintenance, termed alternative maintenance of telomeres (ALT). Although the molecular mechanism of ALT is not known, GT-rich sequences in prokaryotes and eukaryotes display high levels of recombination relative to those of non-GT-rich DNA. We show that human telomeric strand-exchange complexes mediated by Escherichia coli RecA protein differ from those formed with nontelomeric sequences. Moreover, telomeric strand-exchange intermediates, unlike those involving nontelomeric sequences, exhibit a tendency to form higher-order nucleoprotein structures. We propose that the strong DNA unwinding activity inherent in the assembly of the RecA strand-exchange complex promotes the formation of alternative DNA structures at human telomeric loci. Organization of these noncanonical structures into higher-order complexes involving multiple DNA duplexes could facilitate the search for homology on different DNA molecules and provide a framework for understanding recombination-dependent mechanisms of telomere maintenance. 相似文献
14.
15.
Repair of cis-platinum-DNA adducts by ABC excinuclease in vivo and in vitro. 总被引:6,自引:3,他引:6
下载免费PDF全文

cis-Platinum compounds, which are used in cancer chemotherapy, are thought to exert their effect by damaging DNA. It is known that this damage is partially repaired in Escherichia coli. Using cis-Pt-treated pBR322 DNA as a probe, we investigated the role of nucleotide excision repair in the removal of Pt-DNA adducts. We found that the nucleotide excision pathway was the major mechanism for repairing Pt adducts in transforming plasmid DNA but that a recA-dependent pathway also contributed to plasmid survival. When cis-Pt-damaged pBR322 was treated with the purified nucleotide excision enzyme ABC excinuclease in vitro, a fraction of the adducts was removed by the enzyme; this removal resulted in a corresponding increase in transformation efficiency. 相似文献
16.
Miller-Messmer M Kühn K Bichara M Le Ret M Imbault P Gualberto JM 《Plant physiology》2012,159(1):211-226
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution. 相似文献
17.
Kondrashov AV Kiefmann M Ebnet K Khanam T Muddashetty RS Brosius J 《Journal of molecular biology》2005,353(1):88-103
Regulated protein biosynthesis in dendrites of neurons might be a key mechanism underlying learning and memory. Neuronal dendritic BC1 RNA and BC200 RNA and similar small untranslated RNAs inhibit protein translation in vitro systems, such as rabbit reticulocyte lysate. Likewise, co-transfection of these RNAs with reporter mRNA suppressed translation levels in HeLa cells. The oligo(A)-rich region of all active small RNAs were identified as the RNA domains chiefly responsible for the inhibitory effects. Addition of recombinant human poly(A)-binding protein (PABP) significantly compensated the inhibitory effect of the small oligo(A)-rich RNA. In vivo, all BC1 RNA appears to be complexed with PABP. Nevertheless, in the micro-environment of dendritic spines of neuronal cells, BC1 RNPs or BC200 RNPs might mediate regulatory functions by differential interactions with locally limited PABP and/or directly or indirectly, with other translation initiation factors. 相似文献
18.
19.
Cells carrying the thermosensitive nrdA101 allele are able to replicate entire chromosomes at 42°C when new DNA initiation events are inhibited. We investigated the role of the recombination enzymes on the progression of the DNA replication forks in the nrdA101 mutant at 42°C in the presence of rifampin. Using pulsed-field gel electrophoresis (PFGE), we demonstrated that the replication forks stalled and reversed during the replication progression under this restrictive condition. DNA labeling and flow cytometry experiments supported this finding as the deleterious effects found in the RecB-deficient background were suppressed specifically by the absence of RuvABC; however, this did not occur in a RecG-deficient background. Furthermore, we show that the RecA protein is absolutely required for DNA replication in the nrdA101 mutant at restrictive temperature when the replication forks are reversed. The detrimental effect of the recA deletion is not related to the chromosomal degradation caused by the absence of RecA. The inhibition of DNA replication observed in the nrdA101 recA mutant at 42°C in the presence of rifampin was reverted by the presence of the wild-type RecA protein expressed ectopically but only partially suppressed by the RecA protein with an S25P mutation [RecA(S25P)], deficient in the rescue of the stalled replication forks. We propose that RecA is required to maintain the integrity of the reversed forks in the nrdA101 mutant under certain restrictive conditions, supporting the relationship between DNA replication and recombination enzymes through the stabilization and repair of the stalled replication forks. 相似文献