共查询到20条相似文献,搜索用时 0 毫秒
1.
Goishi K Shimizu A Najarro G Watanabe S Rogers R Zon LI Klagsbrun M 《Development (Cambridge, England)》2006,133(13):2585-2593
Cataracts, the loss of lens transparency, are the leading cause of human blindness. The zebrafish embryo, with its transparency and relatively large eyes, is an excellent model for studying ocular disease in vivo. We found that the zebrafish cloche mutant, both the cloche(m39) and cloche(S5) alleles, which have defects in hematopoiesis and blood vessel development, also have lens cataracts. Quantitative examination of the living zebrafish lens by confocal microscopy showed significant increases in lens reflectance. Histological analysis revealed retention of lens fiber cell nuclei owing to impeded terminal differentiation. Proteomics identified gamma-crystallin as a protein that was substantially diminished in cloche mutants. Crystallins are the major structural proteins in mouse, human and zebrafish lens. Defects in crystallins have previously been shown in mice and humans to contribute to cataracts. The loss of gamma-crystallin protein in cloche was not due to lowered mRNA levels but rather to gamma-crystallin protein insolubility. AlphaA-crystallin is a chaperone that protects proteins from misfolding and becoming insoluble. The cloche lens is deficient in both alphaA-crystallin mRNA and protein during development from 2-5 dpf. Overexpression of exogenous alphaA-crystallin rescued the cloche lens phenotype, including solubilization of gamma-crystallin, increased lens transparency and induction of lens fiber cell differentiation. Taken together, these results indicate that alphaA-crystallin expression is required for normal lens development and demonstrate that cataract formation can be prevented in vivo. In addition, these results show that proteomics is a valuable tool for detecting protein alterations in zebrafish. 相似文献
2.
A genomic clone containing the gl1–2 allele has been isolated and sequenced. The predicted amino acid sequence of the gl1–2 protein is identical to that of the GL1-Col allele up to position 201. At this point in the coding region of gl1–2 there is a deletion relative to the wild-type sequence that results in an in-frame stop codon at position 202. This deletion removes 27 amino acid residues, including a highly negatively charged region, from the predicted gl1–2 polypeptide. The loss of this negatively charged carboxy-terminal region from the gl1–2 product is most likely the cause of the partial loss of gene activity which results in a reduction in leaf trichome initiation. 相似文献
3.
Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. 总被引:4,自引:0,他引:4
Vertebrate embryonic hematopoiesis is a complex process that involves a number of cellular interactions, notably those occurring between endothelial and blood cells. The zebrafish cloche mutation affects both the hematopoietic and endothelial lineages from an early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W. R., Zon, L. I. and Fishman, M. C. (1995) Development 121, 3141-3150). cloche mutants lack endocardium, as well as head and trunk endothelium, and nearly all blood cells. Cell transplantation studies have revealed that the endocardial defect in cloche is cell-autonomous: wild-type cells can form endocardium in mutant hosts, but mutant cells never contribute to the endocardium in wild-type or mutant hosts. In this paper, we analyze the cell-autonomy of the blood defect in cloche. The blood cell deficiency in cloche mutants could be an indirect effect of the endothelial defects. Alternatively, cloche could be required cell-autonomously in the blood cells themselves. To distinguish between these possibilities, we cotransplanted wild-type and mutant cells into a single wild-type host in order to compare their respective hematopoietic capacity. We found that transplanted wild-type cells were much more likely than mutant cells to contribute to circulating blood in a wild-type host. Furthermore, in the few cases where both wild-type and mutant donors contributed to blood in a wild-type host, the number of blood cells derived from the wild-type donor was always much greater than the number of blood cells derived from the mutant donor. These data indicate that cloche is required cell-autonomously in blood cells for their differentiation and/or proliferation. When we assessed early expression of the erythropoietic gene gata-1 in transplant recipients, we found that mutant blastomeres were as likely as wild-type blastomeres to give rise to gata-1-expressing cells in a wild-type host. Together, these two sets of data argue that cloche is not required cell-autonomously for the differentiation of red blood cells, as assayed by gata-1 expression, but rather for their proliferation and/or survival, as assayed by their contribution to circulating blood. In addition, we found that transplanted wild-type cells were less likely to express gata-1 in a mutant environment than in a wild-type one, suggesting that cloche also acts non-autonomously in red blood cell differentiation. This non-autonomous function of cloche in red blood cell differentiation may reflect its cell-autonomous requirement in the endothelial lineage. Thus, cloche appears to be required in erythropoiesis cell non-autonomously at a step prior to gata-1 expression, and cell-autonomously subsequently. 相似文献
4.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed. 相似文献
5.
Swaying is a mutant allele of the proto-oncogene Wnt-1 总被引:5,自引:0,他引:5
Mice homozygous for the recessive mutation swaying (sw) are characterized by ataxia and hypertonia, attributed to the malformation of anterior regions of the cerebellum. We show that sw is a deletion of a single base pair from the proto-oncogene Wnt-1. The deletion is predicted to cause premature termination of translation, eliminating the carboxy-terminal half of the Wnt-1 protein. Histological examination shows that sw is phenotypically identical to a previously described wnt-1 mutation introduced into mice by gene targeting. Although both mutations in Wnt-1 disrupt primarily the development of the anterior cerebellum, they also exhibit a variability in expressivity such that rostrally adjacent structures in the midbrain and caudally adjacent structures in the posterior cerebellum can also be affected. 相似文献
6.
Mellgren EM Johnson SL 《Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society》2006,19(3):232-238
Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin. 相似文献
7.
8.
9.
Alexandar I San Segundo P Venkov P del Rey F Vázquez de Aldana CR 《The international journal of biochemistry & cell biology》2004,36(11):2196-2213
To improve our understanding of the factors involved in the osmotic stability of yeast cells, a search for novel conditional Saccharomyces cerevisiae cell lysis mutants was performed. Ten temperature-sensitive (ts) mutant strains of S. cerevisiae were isolated that lyse at the restrictive temperature on hypotonic, but not on osmotically supported medium. The ten mutants fell into four complementation groups: ts1 to ts4. To clone the wild-type gene corresponding to the ts4 mutation, a strategy aimed at complementing the thermosensitive phenotype-using low-copy and high-copy DNA libraries--was followed, but only two extragenic suppressors were identified. Another approach, in which classic genetic methods were combined with the use of yeast artificial chromosomes and traditional cloning procedures, allowed the identification of the NUD1 gene--which codes for a component of the spindle-pole body-as the wild-type gene corresponding to the ts4 mutation. Cloning and sequencing of the defective allele from the chromosome of the mutant cells resulted in the identification of a point mutation that produces a single amino acid change in the protein: a Gly-to-Glu change at position 585 (the nud1-G585E allele). Further analysis revealed that cells carrying this allele show a thermosensitive growth defect. At the restrictive temperature, the cells arrest with large buds, elongated spindles, and duplicated nuclei. In addition, with longer incubation times they are unable to maintain cellular integrity and lyse. Our results have allowed the identification of the first single amino acid mutation in NUD1, and suggest a link between cell cycle progression and cellular integrity. 相似文献
10.
11.
Kurosawa T Igarashi S Nishizawa M Onodera O 《Biochemical and biophysical research communications》2005,337(3):1012-1018
Familial amyloidotic polyneuropathy (FAP) is a hereditary systemic amyloidosis caused by dominantly acting missense mutations in the gene encoding transthyretin (TTR). The most common mutant TTR is of the Val30Met type, which results from a point mutation. Because the major constituent of amyloid fibrils is mutant TTR, agents that selectively suppress mutant TTR expression could be powerful therapeutic tools. This study has been performed to evaluate the use of small interfering RNAs (siRNAs) for the selective silencing of mutant Val30Met TTR in cell culture systems. We have identified an siRNA that specifically inhibits mutant, but not wild-type, TTR expression even in cells expressing both alleles. Thus, this siRNA-based approach may have potential for the gene therapy of FAP. 相似文献
12.
Amalia Martínez-Mir Concha Vilela Mònica Bayés Diana Valverde L. Dain Magdalena Beneyto Marina Marco Montserrat Baiget Daniel Grinberg Susana Balcells Roser Gonzàlez-Duarte Lluïsa Vilageliu 《Human genetics》1997,99(6):827-830
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous form of retinal degeneration. Several genes and loci
have been shown to be involved in the disease, although each of them only accounts for a few cases. Mutations in the gene
encoding ROM1, a rod-specific protein, have been putatively associated with several forms of RP. Here we describe a double-mutant
allele of this gene, P60T and T108M, present in two affected sibs and also in two healthy members of a Spanish RP family.
The same double-mutant allele was previously considered to be responsible for autosomal dominant RP in one family. We now
report data that question the potential pathogenicity of these two ROM1 mutations.
Received: 30 July 1996 / Revised: 13 December 1996 相似文献
13.
Inagaki M Komatsu Y Scott G Yamada G Ray M Ninomiya-Tsuji J Mishina Y 《Genesis (New York, N.Y. : 2000)》2008,46(8):431-439
TAK1 binding protein 1 (TAB1) binds and induces autophosphorylation of TGF-beta activating kinase (TAK1). TAK1, a mitogen-activated kinase kinase kinase, is involved in several distinct signaling pathways including non-Smad pathways for TGF-beta superfamily members and inflammatory responses caused by cytokines. Conventional disruption of the murine Tab1 gene results in late gestational lethality showing intraventricular septum defects and underdeveloped lung alveoli. To gain a better understanding of the roles of TAB1 in different tissues, at different stages of development, and in pathological conditions, we generated Tab1 floxed mice in which the loxP sites flank Exons 9 and 10 to remove the C-terminal region of TAB1 protein necessary for activation of TAK1. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in the epiblast during early embryogenesis, results in deletion of the gene and protein. These homozygous Cre-recombined null embryos display an identical phenotype to conventional null embryos. This animal model will be useful in revealing distinct roles of TAB1 in different tissues at different stages. 相似文献
14.
H H Kazazian Jr S H Orkin C D Boehm S C Goff C Wong C E Dowling P E Newburger R G Knowlton V Brown H Donis-Keller 《American journal of human genetics》1986,38(6):860-867
We have studied a nuclear family containing a single child with severe beta-thalassemia intermedia, a Greek-Cypriot mother with hematological findings of beta-thalassemia trait, and a Polish father who is hematologically normal. Since both the child and her father were heterozygous for a DNA polymorphism within the beta-globin gene, it was possible to clone and sequence the beta-globin gene identical by descent from both the child and her father. A nonsense mutation in codon 121 (GAA----TAA) was found in the beta-globin gene of the child, while the same gene from her father lacked this mutation and was normal. This mutation has not been previously observed among over 200 beta-thalassemia genes characterized in Caucasians. Since the mutation eliminates an EcoRI site in the beta-globin gene, we could show that the mutation is not present in genomic DNA of the father. To rule out germinal mosaicism, sperm DNA of the father was also digested with EcoRI, and the mutant EcoRI fragment was not observed under conditions that would detect the mutation if it were present in at least 2% of sperm cells. Routine HLA and blood group testing supported stated paternity. In addition, studies with 17 DNA probes that detect multiple allele polymorphisms increased the probability of stated paternity to at least 10(8):1. These data provide evidence that the G----T change in codon 121 of the beta-globin gene in the child is the result of a spontaneous mutation that occurred during spermatogenesis in a paternal germ cell. 相似文献
15.
16.
目的:在化学物质乙基亚硝基脲(ENU)诱变的F1代斑马鱼中筛选学习记忆缺陷的突变体,为学习与记忆相关机制的研究提供新的模式动物。方法:通过抑制逃避反应的行为学方法筛选出斑马鱼突变体,然后利用qRT-PCR检测基因表达对突变体进行鉴定。结果:筛选到一例斑马鱼突变体fgt。该突变体在训练后24 h的长时记忆显著的低于野生型。其F2代在训练后的24 h的长时记忆中有将近一半(13/30)显著的低于野生型,而另一半则相对正常。对一个新的环境的探索后,学习记忆相关的早期即刻基因(IEGs)c-fos在将近一半突变体F2代中(13/30)的表达与野生型的对照相比明显升高,且有统计学上的显著性差异,另外一半相对正常,与行为学结果是一致的。结论:筛选获得的斑马鱼fgt突变体是一个显性长时记忆缺陷的突变体。 相似文献
17.
18.
A specific light program consisting of multiple treatments with alternating red and far-red light pulses was used to isolate mutants in phytochrome A-dependent signal transduction in Arabidopsis seedlings. Because of their phenotype, the mutants were called eid (empfindlicher im dunkelroten Licht, which means hypersensitive in far-red light). One of the isolated mutants, eid6, is a novel recessive allele of the COP1 gene (constitutive photomorphogenic 1) that carries an amino acid transition in a conserved histidine residue of the RING finger domain. Mutant seedlings exhibited an extreme hypersensitivity towards all tested light qualities, but in contrast to known cop1 alleles, no constitutive photomorphogenic phenotype was detectable in darkness. Thus, the novel cop1eid6 allele seems to encode for a protein whose remaining activity is sufficient for the suppression of photomorphogenesis in dark-grown plants. In adult cop1eid6 plants, the development of the Cop1 phenotype is dominated by phytochrome B. Comparison of the phenotype of the novel cop1eid6 and the weak cop1-4 allele under continuous far-red light indicates that the RING finger and coiled-coil domains of COP1 are sufficient for some specific regulatory function in phytochrome A-dependent high irradiance responses. 相似文献
19.
We consider whether the fixation probability of an allele in a two-allele diploid system is always a monotonic function of
the selective advantage of the allele. We show that while this conjecture is correct for intermediate dominance, it is not
correct in general for either overdominant or underdominant alleles, and that for some parameter ranges the fixation probability
can initially decrease and then increase as a function of the amount of selection. We have partial results that characterize
the ranges of parameters for which this happens.
相似文献
20.
Mansi Gupta Anja Machate Daniela Zöller Michael Brand 《Genesis (New York, N.Y. : 2000)》2016,54(1):19-28
Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx‐based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene‐trap mutagenesis. The SAGFLEx gene‐trap cassette comprises the rabbit β‐globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site‐specific recombinases Cre and Flp. Insertion of the gene‐trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene‐trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial‐ and temporal‐controlled manner. genesis 54:19–28, 2016. © 2015 Wiley Periodicals, Inc. 相似文献