首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID in silico using three prediction tools and in living cells using both single-cell colocalization image analysis and nuclear translocation analysis. We confirmed the mitochondrial localization of endonuclease G and AIF by prediction analysis and by single-cell colocalization image analysis. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the membranes of various organelles. The highest concentration of AMID was observed associated with the Golgi. Colocalization of AMID with lysosomes was also indirectly confirmed by analysis of AMID-rich vesicle velocity using manual tracking analysis. Bioinformatic analysis also detected nuclear localization signals in endonuclease G and AIF, but not in AMID. A novel analysis of time-lapse fluorescence image data during staurosporine-induced apoptosis revealed nuclear translocation only for endonuclease G and AIF.  相似文献   

2.
3.
The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement, quantitative image processing method to assess protein translocation in living cells based on the computation of spatial variance maps of time-lapse images. The method is first illustrated and validated on simulated images of a fluorescently-labeled protein translocating from mitochondria to cytoplasm, and then applied to experimental data obtained with fluorescently-labeled hexokinase 2 in different cell types imaged by regular or confocal microscopy. The method was found to be robust with respect to cell morphology changes and mitochondrial dynamics (fusion, fission, movement) during the time-lapse imaging. Its ease of implementation should facilitate its application to a broad spectrum of time-lapse imaging studies.  相似文献   

4.
Japanese encephalitis virus (JEV) nonstructural protein 5 (NS5) exhibits a Type I interferon (IFN) antagonistic function. This study characterizes Type I IFN antagonism mechanism of NS5 protein, using proteomic approach. In human neuroblastoma cells, NS5 expression would suppress IFNβ‐induced responses, for example, expression of IFN‐stimulated genes PKR and OAS as well as STAT1 nuclear translocation and phosphorylation. Proteomic analysis showed JEV NS5 downregulating calreticulin, while upregulating cyclophilin A, HSP 60 and stress‐induced‐phosphoprotein 1. Gene silence of calreticulin raised intracellular Ca2+ levels while inhibiting nuclear translocalization of STAT1 and NFAT‐1 in response to IFNβ, thus, indicating calreticulin downregulation linked with Type I IFN antagonism of JEV NS5 via activation of Ca2+/calicineurin. Calcineurin inhibitor cyclosporin A attenuated NS5‐mediated inhibition of IFNβ‐induced responses, for example, IFN‐sensitive response element driven luciferase, STAT1‐dependent PKR mRNA expression, as well as phosphorylation and nuclear translocation of STAT1. Transfection with calcineurin (vs. control) siRNA enhanced nuclear translocalization of STAT1 and upregulated PKR expression in NS5‐expressing cells in response to IFNβ. Results prove Ca2+, calreticulin, and calcineurin involvement in STAT1‐mediated signaling as well as a key role of JEV NS5 in Type I IFN antagonism. This study offers insights into the molecular mechanism of Type I interferon antagonism by JEV NS5.  相似文献   

5.
6.
7.
Cell proliferation is crucial to tissue growth and form during embryogenesis, yet dynamic tracking of cell cycle progression and cell position presents a challenging roadblock. We have developed a fluorescent cell cycle indicator and single cell analysis method, called CycleTrak, which allows for better spatiotemporal resolution and quantification of cell cycle phase and cell position than current methods. Our method was developed on the basis of the existing Fucci method. CycleTrak uses a single lentiviral vector that integrates mKO2-hCdt1 (30/120), and a nuclear-localized eGFP reporter. The single vector and nuclear localized fluorescence signals simplify delivery into cells and allow for rapid, automated cell tracking and cell cycle phase readout in single and subpopulations of cells. We validated CycleTrak performance in metastatic melanoma cells and identified novel cell cycle dynamics in vitro and in vivo after transplantation and 3D confocal time-lapse imaging in a living chick embryo.  相似文献   

8.
9.
Sohn SY  Hearing P 《Journal of virology》2011,85(15):7555-7562
Tyrosine phosphorylation and nuclear translocation of STAT1 indicate activation of interferon (IFN) signal transduction pathways. Here, we demonstrate that tyrosine-phosphorylated STAT1 is targeted by a unique mechanism in adenovirus (Ad)-infected cells. Ad is known to suppress IFN-inducible gene expression; however, we observed that Ad infection prolongs the tyrosine phosphorylation of STAT1 induced by alpha IFN in infected cells. To understand this paradoxical effect, we examined the subcellular localization of STAT1 following Ad infection and found that nuclear, tyrosine-phosphorylated STAT1 accumulates at viral replication centers. This form of STAT1 colocalized with newly synthesized viral DNA. Viral DNA replication, but not viral late gene expression, is required for the regulation of STAT1 phosphorylation. Our results indicate that Ad infection regulates STAT1 dephosphorylation rather than STAT1 phosphorylation. Consistent with this idea, we show that Ad infection disrupts the interaction between STAT1 and its cognate protein tyrosine phosphatase, TC45. Our findings indicate that Ad sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation. This report suggests a strategy employed by Ad to counteract an active form of STAT1 in the nucleus of infected cells.  相似文献   

10.
11.
12.
Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes.  相似文献   

13.
Rabies virus P protein inhibits alpha interferon (IFN-alpha)- and IFN-gamma-stimulated Jak-STAT signaling by retaining phosphorylated STAT1 in the cytoplasm. Here, we show that P also blocks an intranuclear step that is the STAT1 binding to the DNA promoter of IFN-responsive genes. As P is a nucleocytoplasmic shuttling protein, we first investigated the effect of the cellular distribution of P on the localization of STAT1 and consequently on IFN signaling. We show that the localization of STAT1 is correlated with the localization of P: in cells expressing a nuclear form of P (the short P3 isoform or the complete P in the presence of the export inhibitor leptomycin B), STAT1 is nuclear, whereas in cells expressing a cytoplasmic form of P, STAT1 is cytoplasmic. However, the expression of nuclear forms of P inhibits the signaling of both IFN-gamma and IFN-alpha, demonstrating that the retention of STAT1 in the cytoplasm is not the only mechanism involved in the inhibition of IFN signaling. Electrophoretic mobility shift analysis indicates that P expression in the cell extracts of infected cells or in stable cell lines prevents IFN-induced DNA binding of STAT1. The loss of the DNA binding of STAT1 and ISGF3 was also observed when purified recombinant P or P3 was added to the extracts of IFN-gamma- or IFN-alpha-treated cells, indicating that P directly affects the DNA binding activity of STAT1. Then products of the rabies virus P gene are able to counteract IFN signaling by creating both cytoplasmic and nuclear blocks for STAT1.  相似文献   

14.
15.
Nanda SK  Baron MD 《Journal of virology》2006,80(15):7555-7568
Rinderpest virus (RPV) is a paramyxovirus closely related to the human pathogen Measles virus. It causes severe disease in cattle, buffalo, and some wild animals; although it can infect humans, it does not cause disease. Here, we demonstrate that RPV blocks the action of both type I (alpha) and type II (gamma) interferons (IFNs) by blocking the phosphorylation and nuclear translocation of STAT1 and STAT2 and that this block is not related to species specificity. In addition, both wild-type virulent and vaccine strains of the virus blocked IFN action. Unlike the case with some other paramyxoviruses, neither STAT1 nor STAT2 is degraded upon virus infection. STAT1 is bound by both the viral structural protein P, and thereby recruited to concentrations of viral protein in the cell, and the nonstructural protein V. Although both P and V proteins bind to STAT1 and can block IFN action when expressed in transfected cells, the IFN antagonist activity of the P protein is weaker than that of the V protein. The viral C protein also seems to weakly block IFN-induced activation of STAT1 in transfection experiments. However, studies with knockout viruses showed that the viral V protein appears to be the dominant inhibitor of IFN signaling in the context of virus infection, since prevention of viral V expression restored the IFN sensitivity of infected cells. Although a change in the distribution pattern of STAT2 was observed in virus-infected cells, STAT2 was not bound by any viral protein.  相似文献   

16.
17.
18.
This study examined whether an immunohistochemical method examining the subcellular localization of STAT5 could be used to characterize the activation of the JAK2/STAT5 pathway by prolactin (PRL) in intact cells or tissues. In the Ins-1 beta-cell line, STAT5A and STAT5B were distributed almost equally in the cytoplasm and the nucleus in unstimulated cells. STAT5A was also detected along the border of cells and in the perinuclear region. After exposure to PRL, the redistribution from the cytoplasm to the nucleus was much higher for STAT5B compared to STAT5A. This translocation represented 12% of the STAT5A and 22% of the STAT5B originally located in the cytoplasm before stimulation. In isolated rat islets of Langerhans, PRL stimulated the nuclear translocation of both STAT5A and STAT5B only in beta-cells. The expression of the PRL receptor only by beta-cells was confirmed with a rabbit polyclonal antiserum raised against the rat PRL receptor. It was estimated that 4% of STAT5A and 9% of STAT5B originally located in the cytoplasm was translocated to the nucleus after stimulation. The presence of a functional JAK2/STAT5 signaling pathway in all islet cells was demonstrated by the nuclear translocation of STAT5B in all islet cells (i.e., alpha-, beta-, and delta-cells) after stimulation with fetal calf serum. The nuclear translocation and tyrosine phosphorylation of STAT5B was biphasic, with an initial peak within 30 min, a nadir between 1 and 3 hr, and prolonged activation after 4 hr. In contrast, the tyrosine phosphorylation of STAT5A was also biphasic but its nuclear translocation peaked within 30 min and was then reduced to a level slightly above that observed before PRL stimulation. This method is able to detect changes in STAT5 activation as small as 2% of the total cell content. These observations demonstrate the utility of this approach for studying the activation of STAT5 in a mixed population of cells within tissues or organs. In addition, the dose response for the nuclear translocation of STAT5B in normal beta-cells was similar to those for changes in proliferation and insulin secretion in isolated rat islets. Therefore, the subcellular localization can be used to monitor the activation of STAT5 and it may be a key event in the upregulation of the pancreatic islets of Langerhans during pregnancy.  相似文献   

19.
20.
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号