首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang X  Zhu C  Bao W  Zhao K  Niu J  Yu XF  Zhang W 《PloS one》2012,7(3):e32405
Human enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) has been a leading cause of childhood infection in China since 2008. Epidemic and molecular characteristics of HFMD have been examined in many areas of China, including the central and southern regions. However, clinical and genetic characterization of EV71 in the northeastern region of China is scarce. In this study, a series of analyses were performed on seven full-length EV71 sequences from HFMD patients who had either severe or mild disease. We have determined that these seven circulating EV71 viruses from Changchun, China are actually complex recombinant viruses involving multiple type A human enterovirus (HEV). Classified as EV71 subtype C4 (EV71 C4), these Changchun EV71 viruses contain genetic recombination events between the CA4, CA5, EV71B4 and EV71C1 strains. Most of the structural protein region (P1) of these viruses resembled that of the prototype EV71 C1 strains. The non-structural protein domains (P2 and P3) showed a high degree of similarity with CA4, CA5 and EV71 B4 in different regions. The 5'UTR had unclassified recombination,while partial 3D region of these viruses showed a high degree of similarity to CA16. Phylogenetic analysis of full-length or partial sequences of isolates from severe or mild disease patients in Changchun always formed a single cluster in various phylogenetic analyses of different genomic regions, suggesting that all seven strains originated from one single common ancestor. There was no correlation between viral genomic sequence and virulence. Thus, we found that circulating recombinant forms of EV71 are prevalent among HFMD patients in Northeastern China. The existence of a unique cluster of EV71 related viruses in Northeast China has important implications for vaccine development that would address the increasing prevalence of HFMD.  相似文献   

2.
Enterovirus 71 (EV71) is a common cause of Hand, foot, and mouth disease (HFMD) and may also cause severe neurological diseases, such as encephalitis and poliomyelitis-like paralysis. To examine the genetic diversity of EV71, we determined and analyzed the complete VP1 sequences (891 nucleotides) from nine EV71 strains isolated in Fuyang, China. We found that nine EV71 strains isolated were over 98% homologous at the nucleotide level and 93%-100% homologous to members of the C4 subgenogroup. At the amino acid level, these Fuyang strains were 99% -100% homologous to one another, 97%-100% homologous to members of the C4 subgenogroup, and the histidine(H) at amino acid position 22 was conserved among the Fuyang strains. The results indicate that Fuyang isolates belong to genotype C4, and an H at position 22 appears to be a marker for the Fuyang strains.  相似文献   

3.
Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization.  相似文献   

4.
Chen CS  Yao YC  Lin SC  Lee YP  Wang YF  Wang JR  Liu CC  Lei HY  Yu CK 《Journal of virology》2007,81(17):8996-9003
Inoculation of enterovirus 71 (EV71) by the oral (p.o.), intramuscular (i.m.), or intracranial route resulted in brain infection, flaccid paralysis, pulmonary dysfunction, and death of 7-day-old mice. The lag time of disease progression indicated that neuroinvasion from the inoculation sites was a prerequisite for the development of the clinical signs. Although EV71 p.o. inoculation led to a persistent viremia and a transient increase in blood-brain barrier permeability at the early stage of the infection, only low levels of virus, which led to neither severe infection nor clinical illness, could be detected in the brain, suggesting that hematogenous transport might not represent a major transmission route. In the spinal cord, following both p.o. and hind limb i.m. inoculation, the virus first appeared and increased rapidly in the lower segments, especially at the anterior horn areas, and then spread to the upper segments and brain in the presence of viremia. A reverse pattern, with the virus being first detected in the upper segment, was observed when the virus was i.m. inoculated in the forelimb. Colchicine, a fast axonal transport inhibitor, but not sciatic nerve transection reduced EV71 neuroinvasion in a dose-dependent manner, indicating a neuronal transmission of the virus.  相似文献   

5.
本文在前期工作基础上,进一步对肠道病毒71型(EV71)从恒河婴猴的感染个体向其他未感染个体传播的可能性及相关生物学特性做了初步分析.通过喷雾形式经呼吸道感染1~2月龄恒河婴猴(A组);在观察临床症状同时,于感染后第7天,取该组动物粪便处理后,将上清液以喷雾形式经呼吸道感染新的婴猴个体(B组),随后对该次代感染个体进行...  相似文献   

6.
对2009年云南省肠道病毒71型分离株KMM09和KM186-09进行全基因组序列测序,并与我国及其它国家流行的EV71基因型进行比较和进化分析。KMM09和KM186-09基因组长为7 409bp,编码2 193个氨基酸,VP1系统进化分析显示2009年云南分离株属于C4基因型的C4a亚型。在结构区,与其它基因型相比较,C基因型之间的核苷酸和氨基酸的同源性高于其它基因型;而在非结构区,C4与B基因型和CA16原型株G10同源性高于其它C基因亚型。通过RDP3重组软件和blast比对分析,发现EV71C4基因型与B3基因型,与CA16原型株G10的基因组在非结构区存在重组。EV71全基因组序列的比较和分析,对了解引起我国手足口病暴发或流行C4基因亚型EV71毒株的遗传特性具有重要意义。  相似文献   

7.
Chemical modifications are important for RNA function and metabolism. N4-acetylcytidine (ac4C) is critical for the translation and stability of mRNA. Although ac4C is found in RNA viruses, the detailed mechanisms through which ac4C affects viral replication are unclear. Here, we reported that the 5′ untranslated region of the enterovirus 71 (EV71) genome was ac4C modified by the host acetyltransferase NAT10. Inhibition of NAT10 and mutation of the ac4C sites within the internal ribosomal entry site (IRES) suppressed EV71 replication. ac4C enhanced viral RNA translation via selective recruitment of PCBP2 to the IRES and boosted RNA stability. Additionally, ac4C increased the binding of RNA-dependent RNA polymerase (3D) to viral RNA. Notably, ac4C-deficient mutant EV71 showed reduced pathogenicity in vivo. Our findings highlighted the essential role of ac4C in EV71 infection and provided insights into potential antiviral treatments.  相似文献   

8.
Meng T  Kolpe AB  Kiener TK  Chow VT  Kwang J 《PloS one》2011,6(7):e21757

Background

Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization.

Methodology/Principal Finding

In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1) of EV71-Fuyang (subgenogroup C4) was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV) immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4) in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains.

Conclusion

Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns.  相似文献   

9.
Human enterovirus 71 (EV71) infection has emerged as a major threat to children; however, no effective antiviral treatment or vaccine is currently available. Antibody-based treatment shows promises to control this growing public health problem of EV71 infection, and a few potent monoclonal antibodies (mAbs) targeting viral capsid protein have been well described. Here, we generated an EV71-specific mouse mAb 2G8 that conferred full protection against lethal EV71 challenge in a suckling mouse model. 2G8 belonged to IgM isotype and neutralized EV71 at the attachment stage. Biochemical assays mapped the binding epitope of 2G8 to the SP70 peptide, which spanning amino acid residues 208–222 on the VP1 protein. Alanine scanning mutagenesis defined the essential roles of multiple residues, including Y208, T210, G212, K215, K218, L220, E221, and Y222, for 2G8 binding. Then, a panel of single mutation was individually introduced into the EV71 infectious clone by reverse genetics, and three mutant viruses, K215A, K218A, and L220A, were successfully recovered and characterized. Biochemical and neutralization assays revealed that K218A mutant partially escaped 2G8 neutralization, while L220A completely abolished 2G8 binding and neutralization. In particular, neutralization assays with human sera demonstrated that K218A and L220A substitutions are also critical for antibody neutralization in natural infection population. These findings not only generate a protective mAb candidate with therapeutic potential but also provide insights into antibody-mediated EV71 neutralization mechanism.  相似文献   

10.
Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picornaviridae family and is the major cause of Hand,foot,and mouth disease (HFMD) in children.Different strains from Gansu were clone...  相似文献   

11.
Human enterovirus 71 (HEV71) is the causative agent of hand, foot, and mouth disease and associated acute neurological disease. At present, little is known about the genetic determinants of HEV71 neurovirulence. Studies of related enteroviruses have indicated that the untranslated regions (UTRs), which control virus-directed translation and replication, also exert significant influence on neurovirulence. We used an infectious cDNA clone of a subgenogroup B3 strain to construct and characterize chimeras with 5'- and 3'-UTR modifications. Replacement of the entire HEV71 5' UTR with that of human rhinovirus 2 (HRV2) resulted in a small reduction in growth efficiency in cells of both nonneuronal (rhabdomyosarcoma) and neuronal (SH-SY5Y) origin due to reduced translational efficiency. However, the introduction of a 17-nucleotide deletion into the proximal region of the 3' UTR significantly decreased the growth of HEV71-HRV2 in SH-SY5Y cells. This observation is similar to that made with stem-loop domain Z (SLD Z)-deleted coxsackievirus B3-HRV2 5'-UTR chimeras reported previously and provides the first evidence of a potentially functional SLD Z in the 3' UTR in human enterovirus A species viruses. We further showed that the cell-specific growth impairment was caused by the synergistic effects of cis-acting UTR control elements on different stages of the virus life cycle. These chimeras will further improve our understanding of the control of HEV71 replication and its relationship to neurovirulence.  相似文献   

12.
对河南省2008~2010年河南省人肠道病毒71型进行基因特征及重组特点研究。对河南省2008~2010年分离的5株肠道病毒EV71型构建VP1序列系统进化树并分析其全基因组序列的重组特点。VP1序列系统进化分析显示2008~2010年河南株均属于C4基因型的C4a亚群,Bootscan分析和5’NCR、P1、P2、P3区的进化树证实C4基因型在2A~2B处存在EV71的B基因型和C基因型的型内重组及在3B~3C处存在EV71的B基因型和CA16/G-10间的型间重组。2008~2010年河南EV71分离株为C4基因型的C4a亚群,与2004年以来的中国大陆优势株流行趋势完全一致,EV71C4基因型存在基因型内和型间双重组现象。  相似文献   

13.
Chen  Zhe  Bao  Linlin  Zhu  Bin  Fu  Hua  Zhu  Shuangli  Ji  Tianjiao  Xue  Ying  Liu  Chuan  Wang  Xurong  Li  Fengdi  Lv  Qi  Qi  Feifei  Yu  Pin  Deng  Wei  Xu  Wenbo  Qin  Chuan  Liu  Hongrong  Jin  Qi 《中国科学:生命科学英文版》2022,65(12):2517-2526
Science China Life Sciences - Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot, and mouth disease (HFMD) in many countries, most frequently affecting children, and a small proportion...  相似文献   

14.
Human enterovirus 71 infection causes hand, foot and mouth disease in children under 6 years of age and has caused mortalities in large-scale outbreaks in the Asia-Pacific region. No effective vaccine or antiviral drugs currently exist against enterovirus 71 in the clinic. In this study, we investigated the antiviral effect of geraniin on enterovirus 71 both in vitro and in vivo. The results showed that geraniin effectively inhibited virus replication in rhabdomyosarcoma cells with an IC(50) of 10 μg/ml. Moreover, geraniin treatment of mice that were challenged with a lethal dose of enterovirus 71 resulted in a reduction of mortality, relieved clinical symptoms, and inhibited virus replication in muscle tissues. The results suggest that geraniin may be used as a potential drug for anti-enterovirus 71.  相似文献   

15.

Background  

Human enterovirus 71 (EV-71) is a common causative agent of hand, foot and mouth disease (HFMD). In recent years, the virus has caused several outbreaks with high numbers of deaths and severe neurological complications. Several new EV-71 subgenotypes were identified from these outbreaks. The mechanisms that contributed to the emergence of these subgenotypes are unknown.  相似文献   

16.
Enterovirus 71 (EV71), a member of the Picornaviridae family, may cause serious clinical manifestations associated with the central nervous system. Enterovirus 3C protease is required for virus replication and can trigger host cell apoptosis via cleaving viral polyprotein precursor and cellular proteins, respectively. Although the role of the 3C protease in processing viral and cellular proteins has been established, very little is known about the modulation of EV71 3C function by host cellular factors. Here, we show that sumoylation promotes EV71 3C protein ubiquitination for degradation, correlating with a decrease of EV71 in virus replication and cell apoptosis. SUMO E2-conjugating enzyme Ubc9 was identified as an EV71 3C-interacting protein. Further studies revealed that EV71 3C can be SUMO (small ubiquitin-like modifier)-modified at residue Lys-52. Sumoylation down-regulated 3C protease activity in vitro and also 3C protein stability in cells, in agreement with data suggesting 3C K52R protein induced greater substrate cleavage and apoptosis in cells. More importantly, the recombinant EV71 3C K52R virus infection conferred more apoptotic phenotype and increased virus levels in culture cells, which also correlated with a mouse model showing increased levels of viral VP1 protein in intestine and neuron loss in the spinal cord with EV71 3C K52R recombinant viral infection. Finally, we show that EV71 3C amino acid residues 45-52 involved in Ubc9 interaction determined the extent of 3C sumoylation and protein stability. Our results uncover a previously undescribed cellular regulatory event against EV71 virus replication and host cell apoptosis by sumoylation at 3C protease.  相似文献   

17.
Little is currently known about the infectious entry process of human enterovirus 71 (HEV71) into host cells, which may represent potential anti-viral targeting sites. In this study a targeted small-interfering RNA (siRNA) screening platform assay was established and validated to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics, and endosomal trafficking essential for HEV71 infection. Screen evaluation was conducted via the expression of well characterized dominant-negative mutants, bioimaging studies (double-labeled immunofluorescence assays, transmission electron microscopy analysis), secondary siRNA-based dosage dependence studies, and drug inhibition assays. The infectious entry of HEV71 into rhabdomyosarcoma cells was shown to be significantly inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis (CME) that include AP2A1, ARRB1, CLTC, CLTCL1, SYNJ1, ARPC5, PAK1, ROCK1, and WASF1. The functional role of CME was verified by the observation of strong co-localization between HEV71 particles and clathrin as well as dose-dependent inhibition of HEV71 infection upon siRNA knockdown of CME-associated genes. HEV71 entry by CME was further confirmed via inhibition by dominant-negative EPS15 mutants and treatment of CME drug inhibitors, with more than 80% inhibition observed at 20 μm chlorpromazine. Furthermore, HEV71 infection was shown to be sensitive to the disruption of human genes in regulating early to late endosomal trafficking as well as endosomal acidic pH. The identification of clathrin-mediated endocytosis as the entry pathway for HEV71 infection of susceptible host cells contributes to a better understanding of HEV71 pathogenesis and enables future development of anti-viral strategies against HEV71 infection.  相似文献   

18.
The comparative analysis of the biological characterization and the genetic background study of EV71 circulating strains is commonly recognized as basic work necessary for development of an effective EV71 vaccine. In this study, we sequenced five EV71 circulating strains, isolated from Fuyang, Hefei, Kunming and Shenzhen city of China and named them FY-23, FY-22, H44, K9 and S1 respectively. The sequence alignment demonstrated their genotypes be C4. The genetic distance of the VP1 gene from these isolates suggested that they were highly co-related with genetic identity similar to other previously reported EV71 strains in China. Additionally, these strains were identified to display some obvious proliferation dynamics and plaque morphology when propagated in Vero cells. However, a distinctive difference in pathogenic ability in neonatal mice was found. Some differences in cross neutralization test &; immunogenic analysis were also found. All these results are related to the biological characterization of circulating EV71 strains in China and aid in the development of an EV71 vaccine in the future.  相似文献   

19.
We previously identified human scavenger receptor class B, member 2 (SCARB2), as a cellular receptor for enterovirus 71 (EV71). Expression of human SCARB2 (hSCARB2) permitted mouse L929 cells to efficiently bind to virions and to produce both viral proteins and progeny viruses upon EV71 infection. Mouse Scarb2 (mScarb2) exhibited 85.8% amino acid identity and 99.9% similarity to hSCARB2. The expression of mScarb2 in L929 cells conferred partial susceptibility. Very few virions bound to mScarb2-expressing cells. The viral titer in L929 cells expressing mScarb2 was approximately 40- to 100-fold lower than that in L929 cells expressing hSCARB2. Using hSCARB2-mScarb2 chimeric mutants, we attempted to map the region that was important for efficient EV71 infection. L929 cells expressing chimeras that carried amino acids 142 to 204 from the human sequence were susceptible to EV71, while chimeras that carried the mouse sequence in this region were not. Moreover, this region was also critical for binding to virions. The determination of this region in hSCARB2 that is important for EV71 binding and infection greatly contributes to the understanding of virus-receptor interactions. Further studies will clarify the early steps of EV71 infection.  相似文献   

20.
Enterovirus 71 is an enterovirus of the family Picornaviridae. The 2C protein of poliovirus, a relative of enterovirus 71, is essential for viral replication. The poliovirus 2C protein is associated with host membrane vesicles, which form viral replication complexes where viral RNA synthesis takes place. We have now identified a host-encoded 2C binding protein called reticulon 3, which we found to be associated with the replication complex through direct interaction with the enterovirus 71-encoded 2C protein. We observed that the N terminus of the 2C protein, which has both RNA- and membrane-binding activity, interacted with reticulon 3. This region of interaction was mapped to its reticulon homology domain, whereas that of 2C was encoded by the 25th amino acid, isoleucine. Reticulon 3 could also interact with the 2C proteins encoded by other enteroviruses, such as poliovirus and coxsackievirus A16, implying that it is a common factor for such viral replication. Reduced production of reticulon 3 by RNA interference markedly reduced the synthesis of enterovirus 71-encoded viral proteins and replicative double-stranded RNA, reducing plaque formation and apoptosis. Furthermore, reintroduction of nondegradable reticulon 3 into these knockdown cells rescued enterovirus 71 infectivity, and viral protein and double-stranded RNA synthesis. Thus, reticulon 3 is an important component of enterovirus 71 replication, through its potential role in modulation of the sequential interactions between enterovirus 71 viral RNA and the replication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号