首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased deployment of renewable energy can contribute towards mitigating climate change and improving air quality, wealth and development. However, renewable energy technologies are not free of environmental impacts; thus, it is important to identify opportunities and potential threats from the expansion of renewable energy deployment. Currently, there is no cross‐national comprehensive analysis linking renewable energy potential simultaneously to socio‐economic and political factors and biodiversity priority locations. Here, we quantify the relationship between the fraction of land‐based renewable energy (including solar photovoltaic, wind and bioenergy) potential available outside the top biodiversity areas (i.e. outside the highest ranked 30% priority areas for biodiversity conservation) within each country, with selected socio‐economic and geopolitical factors as well as biodiversity assets. We do so for two scenarios that identify priority areas for biodiversity conservation alternatively in a globally coordinated manner vs. separately for individual countries. We show that very different opportunities and challenges emerge if the priority areas for biodiversity protection are identified globally or designated nationally. In the former scenario, potential for solar, wind and bioenergy outside the top biodiversity areas is highest in developing countries, in sparsely populated countries and in countries of low biodiversity potential but with high air pollution mortality. Conversely, when priority areas for biodiversity protection are designated nationally, renewable energy potential outside the top biodiversity areas is highest in countries with good governance but also in countries with high biodiversity potential and population density. Overall, these results identify both clear opportunities but also risks that should be considered carefully when making decisions about renewable energy policies.  相似文献   

2.
Liu W  Vogt CA  Luo J  He G  Frank KA  Liu J 《PloS one》2012,7(4):e35420
Nature-based tourism has the potential to enhance global biodiversity conservation by providing alternative livelihood strategies for local people, which may alleviate poverty in and around protected areas. Despite the popularity of the concept of nature-based tourism as an integrated conservation and development tool, empirical research on its actual socioeconomic benefits, on the distributional pattern of these benefits, and on its direct driving factors is lacking, because relevant long-term data are rarely available. In a multi-year study in Wolong Nature Reserve, China, we followed a representative sample of 220 local households from 1999 to 2007 to investigate the diverse benefits that these households received from recent development of nature-based tourism in the area. Within eight years, the number of households directly participating in tourism activities increased from nine to sixty. In addition, about two-thirds of the other households received indirect financial benefits from tourism. We constructed an empirical household economic model to identify the factors that led to household-level participation in tourism. The results reveal the effects of local households' livelihood assets (i.e., financial, human, natural, physical, and social capitals) on the likelihood to participate directly in tourism. In general, households with greater financial (e.g., income), physical (e.g., access to key tourism sites), human (e.g., education), and social (e.g., kinship with local government officials) capitals and less natural capital (e.g., cropland) were more likely to participate in tourism activities. We found that residents in households participating in tourism tended to perceive more non-financial benefits in addition to more negative environmental impacts of tourism compared with households not participating in tourism. These findings suggest that socioeconomic impact analysis and change monitoring should be included in nature-based tourism management systems for long-term sustainability of protected areas.  相似文献   

3.
Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001–2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use.  相似文献   

4.
Aim Recent efforts to apply the principles of systematic conservation planning to freshwater ecosystems have focused on the special connected nature of these systems as a way to ensure adequacy (long‐term maintenance of biodiversity). Connectivity is important in maintaining biodiversity and key ecological processes in freshwater environments and is of special relevance for conservation planning in these systems. However, freshwater conservation planning has focused on longitudinal connectivity requirements within riverine ecosystems, while other habitats, such as floodplain wetlands or lakes and connections among them, have been overlooked. Here, we address this gap by incorporating a new component of connectivity in addition to the traditional longitudinal measure. Location Northern Australia. Methods We integrate lateral connections between freshwater areas (e.g. lakes and wetlands) that are not directly connected by the river network and the longitudinal upstream–downstream connections. We demonstrate how this can be used to incorporate ecological requirements of some water‐dependent taxa that can move across drainage divides, such as waterbirds. Results When applied together, the different connectivity rules allow the identification of priority areas that contain whole lakes or wetlands, their closest neighbours whenever possible, and the upstream/downstream reaches of rivers that flow into or from them. This would facilitate longitudinal and lateral movements of biota while minimizing the influence of disturbances potentially received from upstream or downstream reaches. Main conclusions This new approach to defining and applying different connectivity rules can help improve the adequacy of freshwater‐protected areas by enhancing movements of biodiversity within priority areas. The integration of multiple connectivity needs can also serve as a bridge to integrate freshwater and terrestrial conservation planning.  相似文献   

5.
Richness, rarity, endemism and complementarity of indicator taxon species are often used to select conservation areas, which are then assumed to represent most regional biodiversity. Assessments of the degree to which these indicator conservation areas coincide across different taxa have been conducted on a variety of vertebrate, invertebrate and plant groups at a national scale in Britain, Canada, USA and South Africa and at a regional scale in Cameroon, Uganda and the USA. A low degree of spatial overlap among and within these selected indicator conservation areas has been demonstrated. These results tend to suggest that indicator conservation areas display little congruence across different taxa. However, some of these studies demonstrate that many conservation areas for indicator taxa capture a high proportion of non-target species. Thus it appears that indicator conservation areas might sample overall biodiversity efficiently. These indicator conservation areas may, however, exclude species essential for effective conservation, e.g. rare, endemic or endangered species. The present study investigated the value of indicator taxa as biodiversity surrogates using spatial congruence and representativeness of different indicator priority conservation areas. The conservation status of species excluded by the indicator approaches is also assessed. Indicator priority conservation areas demonstrate high land area requirements in order to fully represent non-target species. These results suggest that efficient priority area selection techniques must reach a compromise between maximizing non-target species gains and minimizing land-use requirements. Reserve selection procedures using indicator-based complementarity appear to be approaches which best satisfy this trade-off.  相似文献   

6.
Over the past century, ponderosa pine–dominated landscapes of the southwestern United States have been altered by human activities such as grazing, timber harvest, road building, and fire exclusion. Most forested areas within these landscapes now show increased susceptibility to stand‐replacing fires, insect outbreaks, and drought‐related mortality. Recent large wildfires in the region have spurred public interest in large‐scale fuel reduction and restoration programs, which create perceived and real conflicts with the conservation of biodiversity. Conservation concerns include the potential for larger road networks, soil and understory disturbance, exotic plant invasion, and the removal of large trees in treated areas. Pursuing prescribed burning, thinning, or other treatments on the broad scale that many scientists and managers envision requires the reconciliation of ecological restoration with biodiversity conservation. This study presents recommendations from a workshop for integrating the principles and practices of restoration ecology and conservation biology, toward the objective of restoring the composition, structure, and function of dry ponderosa pine forests. Planning on the scale of hundreds of thousands of hectares offers opportunities to achieve multiple objectives (e.g., rare species protection and restoration of ecological structures and processes) that cannot easily be addressed on a site‐by‐site basis. However, restoration must be coordinated with conservation planning to achieve mutual objectives and should include strict guidelines for protection of rare, declining, and sensitive habitats and species.  相似文献   

7.
Conservation planning is crucial for megadiverse countries where biodiversity is coupled with incomplete reserve systems and limited resources to invest in conservation. Using Peru as an example of a megadiverse country, we asked whether the national system of protected areas satisfies biodiversity conservation needs. Further, to complement the existing reserve system, we identified and prioritized potential conservation areas using a combination of species distribution modeling, conservation planning and connectivity analysis. Based on a set of 2,869 species, including mammals, birds, amphibians, reptiles, butterflies, and plants, we used species distribution models to represent species'' geographic ranges to reduce the effect of biased sampling and partial knowledge about species'' distributions. A site-selection algorithm then searched for efficient and complementary proposals, based on the above distributions, for a more representative system of protection. Finally, we incorporated connectivity among areas in an innovative post-hoc analysis to prioritize those areas maximizing connectivity within the system. Our results highlight severe conservation gaps in the Coastal and Andean regions, and we propose several areas, which are not currently covered by the existing network of protected areas. Our approach helps to find areas that contribute to creating a more representative, connected and efficient network.  相似文献   

8.
Protected areas – widely recognized as the main strategy for biodiversity conservation – have greatly expanded, covering ∼15% of the Earth; however, we still lack detailed information on biodiversity to evaluate their effectiveness. This is particularly urgent for biodiversity hotspots where protected areas are islands within human modified landscapes. We focus on mammals of the Iguaçu National Park – one of the most important parks in the Atlantic Forest hotspot – to evaluate the effectiveness of protected areas in conserving biodiversity. We monitored 300 km2 with 37 cameras traps during five years to assess if (1) species occupancy declined over time, and (2) if species occupancy/detectability are spatially associated with illegal hunting, proximity to tourism infrastructure and distance from the edge, estimating the proportion of the park where these negative effects are detected. Many species that are rare in most Atlantic Forest remnants presented high occupancy within the park, and no decline in occupancy was observed over time. However, the distribution of 11 species was spatially associated primarily with the distance from the edge and proximity to tourism infrastructure, resulting in a decline, across half of the park area, from 13 to 23% in occupancy and from 19 to 35% in detectability (values averaged among species). These negative effects should be even stronger on smaller protected areas, which are the majority in highly altered hotspots. Re-establishing and properly managing buffer zones and restricting tourism to localized areas are essential to ensure the effectiveness of protected areas for biodiversity conservation.  相似文献   

9.
Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social–ecological contexts.  相似文献   

10.
Landscapes in tropical regions have been greatly altered by human activities, as a product of growing demands for mineral and agricultural production, as well as those related to the generation of energy (e.g., hydroelectric, wind). In this scenario, caves have suffered several impacts, sometimes irreversible, as they are generally associated with rocks of high economic value and are closely related to epigean systems. Several indices have been proposed to guide conservation policies for the world’s speleological heritage, although few of them consider cave biodiversity as a criterion. To address this knowledge gap, we tested the applicability of four newly proposed indices to assist researchers and policy-makers select priority areas for global cave biodiversity conservation. To compare indices, we used data from 48 caves of the largest carbonate region of South America (Bambui geological group), all found within the Cerrado, a global biodiversity hotspot. Each of the four indices considered cave biodiversity as a criterion, although only three adequately evaluated this attribute. Based on results of Simões index and CCPi, which were the most appropriate in relation to indicate priority caves for biodiversity conservation in regions where the fauna and its distribution are not fully known, 15 of the 48 caves were identified as conservation priorities.  相似文献   

11.
保护区发展生态旅游的意义和途径   总被引:25,自引:0,他引:25  
生态旅游在世界范围内正经历着一个蓬勃发展的时期,它是一个区域或一个保护区生态发展的重要内容,不仅对地区经济和社会发展有重要的促进作用,而且也是激励保护区进一步发展的动力。当然,过分强调经济收入,无控制地发展旅游,就可能引起不适当的开发或管理不周。导致生态破坏。因此,保护区发展生态旅游要有一个周密的规划,寻找旅游者的享受和自然保护之间的平衡。  相似文献   

12.

Motivation and aim

Mapping the spatial distribution of biodiversity is critical for understanding its fundamental drivers (e.g. speciation, environmental filtering) as well as for conservation assessment. An important dimension of this topic is how the distributions of subsets of species contribute to the overall distribution of biodiversity. Although studies have previously investigated the role of geographically common and rare species in determining these patterns, their respective contributions appear to vary between studies. Knowing which species contribute disproportionately to the spatial distribution of biodiversity enables the identification of key indicator species for biodiversity assessments across large areas and is important for prioritising areas for conservation actions. An extensive review of the literature was carried out to synthesise research on how geographic rarity contributes to spatial patterns of biodiversity. We identify potential explanations for the discrepancies in findings between studies and identify opportunities for further research.

Results

Many studies on the contribution of geographic commonness and rarity to the spatial distribution of biodiversity focus on species richness. A prevalent view is that common (widespread) species contribute disproportionately, although this is not ubiquitous across studies due to factors such as the geographic extent from which relative rarity is quantified. We identify research pathways that will further improve our knowledge of how geographically common and rare species shape the spatial distribution of biodiversity including the impact of spatial scale on species contributions and the incorporation of biodiversity components beyond taxonomic alpha diversity, that is functional and phylogenetic diversity.

Main conclusions

Future research should incorporate multiple biodiversity components and model scale dependency. This will further our knowledge on the underlying processes that shape the spatial variation of biodiversity across the planet and help inform biological surveys and conservation activities.  相似文献   

13.
Primates are globally recognized as an important component of biodiversity, however, more than half of primate species in the world are threatened and agriculture expansion is one of the main threats. Brazil has one of the largest networks of protected areas (PAs) in the world, but there are some conservation gaps, such as the Amazonian savannas. We aim to identify a network of priority areas to conserve a Brazilian Amazonian savanna highly threatened by agriculture expansion, by using seven primate species and four vegetation types as targets. We constructed species distribution models (SDMs) for the primates and used a Systematic Conservation Planning approach. We defined as a quantitative conservation target the proportion of the distribution of each primate species within the network according to traits related to their vulnerability to extinction. In addition, we set a target of including at least 30% of each savanna type within priority areas. We created a map of potential use of the land for agriculture and another of environmental risk, which were included as costs in the decision process, and together with the SDMs and vegetation types, identified the network of priority areas by using the software Marxan. We evaluated the feasibility of implementing conservation actions, such as establishing Conservation Units (e.g. reserves managed by the government), or implementing community-based conservation actions in each priority area. Additionally, we estimated the economic investment (US$/year) required to establish Conservation Units across the priority areas. Conservation targets for primates and vegetation types were met by protecting 3,240 km2 of the Savannas of Amapá. An investment of approximately US$958,122/year over five years is required to turn these priority areas into Conservation Units, however, we propose other strategies such as conservation on community lands and public policies. All these strategies would allow for protecting forest cover and the heterogeneous environments that are suitable for primates and other biodiversity components.  相似文献   

14.
Community-based ecotourism (CBET) has become a popular tool for biodiversity conservation, based on the principle that biodiversity must pay for itself by generating economic benefits, particularly for local people. There are many examples of projects that produce revenues for local communities and improve local attitudes towards conservation, but the contribution of CBET to conservation and local economic development is limited by factors such as the small areas and few people involved, limited earnings, weak linkages between biodiversity gains and commercial success, and the competitive and specialized nature of the tourism industry. Many CBET projects cited as success stories actually involve little change in existing local land and resource-use practices, provide only a modest supplement to local livelihoods, and remain dependent on external support for long periods, if not indefinitely. Investment in CBET might be justified in cases where such small changes and benefits can yield significant conservation and social benefits, although it must still be recognized as requiring a long term funding commitment. Here, I aim to identify conditions under which CBET is, and is not, likely to be effective, efficient and sustainable compared with alternative approaches for conserving biodiversity. I also highlight the need for better data and more rigorous analysis of both conservation and economic impacts.  相似文献   

15.
Abstract. Conservation seeks ultimately to protect and maintain biodiversity indefinitely. Most biodiversity features targeted in past conservation planning have been largely aspects of ecological and biogeographical pattern rather than process. However, the persistence of biodiversity can only be ensured through consideration of the ecological and evolutionary processes that underpin biodiversity, as well as its present spatial pattern. This paper identifies spatial surrogates of ecological and evolutionary processes for regional conservation planning in one of the world's biodiversity hotspots, the Cape Floristic Region. We identified six types of spatial components (namely edaphic interfaces, upland–lowland interfaces, sand movement corridors, riverine corridors, upland–lowland gradients and macroclimatic gradients) as surrogates for key processes such as ecological and geographical diversification, and species migration. Spatial components were identified in a GIS using published data and expert knowledge. Options for achieving targets for process components have been seriously compromised by habitat transformation. Between 30 and 75% of the original extent of the spatial components currently remain functional. Options for achieving upland–lowland and macroclimatic gradients are very limited in the lowlands where most of the habitat has been transformed by agriculture. We recommend that future studies place their research on ecological and evolutionary processes in a spatially explicit framework. Areas maintaining adaptive diversification (e.g. environmental gradients, ecotones) or containing historically isolated populations should be identified and protected. The spatial dimensions of eco-logical processes such as drought and fire refugia also need to be determined and such insights incorporated in conservation planning. Finally, connectivity within these areas should be ensured to maintain species migration and gene flow.  相似文献   

16.
保护地以其丰富的生物多样性和优美的自然环境为生态旅游的开展提供了基础条件。近年来, 保护地的生态旅游与旅游道路建设得到了飞速发展。旅游公路的修建, 在促进经济发展的同时, 也带来了野生动物致死、基因隔离、栖息地丧失、生境破碎化等一系列生态问题。因此设立合适的野生动物通道作为一种有效方式, 成为缓解公路对野生动物负面影响的主要途径。本文基于动物通道相关研究, 提出通道设计应遵从针对性、科学性、持续有效性、可行性四条原则, 道路生态学与保护生物学相关理论、保护地管理法规与管理规划、关键物种或类群生态学特性与栖息地现状以及沿线地形地貌特征都应作为通道设置的参考依据; 并从通道建设的数量、位置、类型、尺寸、表面设计、配套设施以及后期监测等方面提出了通道建设的技术参数。为长期有效地发挥野生动物通道的生态功能, 建议制定通道建设技术规范, 细化通道技术参数, 积极开展科研监测, 以缓解道路对野生动物的影响。  相似文献   

17.
Cox RL  Underwood EC 《PloS one》2011,6(1):e14508
Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work.  相似文献   

18.
Biodiversity conservation planning requires trade-offs, given the realities of limited resources and the competing demands of society. If net benefits for society are important, biodiversity assessment cannot occur without other sectoral factors “on the table”. In trade-offs approaches, the biodiversity value of a given area is expressed in terms of the species or other components of biodiversity that it has that are additional to the components protected elsewhere. That “marginal gain” is called thecomplementarity value of the area. A recent whole-country planning study for Papua New Guinea illustrates the importance of complementarity-based tradeoffs in determining priority areas for biodiversity conservation, and for designing economic instruments such as biodiversity levies and offsets. Two international biodiversity programs provide important new opportunities for biodiversity trade-offs taking complementarity into account. Both the Millennium Ecosystem Assessment and the Critical Ecosystems or “hotspots” programs can benefit from an explicit framework that incorporates tradeoffs, in which a balance is achieved not only by land-use allocation among areas, but also by the crediting of partial protection of biodiversity provided by sympathetic management within areas. For both international programs, our trade-offs framework can provide a natural linkage between local, regional and global planning levels.  相似文献   

19.
Aim  With the ever-increasing threats to biodiversity, efforts are being directed towards identifying hotspots of special importance for conservation. In particular, there has been an effort to identify irreplaceable regions that are especially rich in rare species. Areas of transition between ecological systems in which multiple species coincide are expected, almost by definition, to be species-rich. Here, we examine whether this is simply a result of an overlap between two communities in boundary regions, or whether boundary areas also hold concentrations of rare (e.g. range-limited) species. We ask whether an analysis that includes areas of transition may be a useful contribution to the identification of biodiversity centres.
Location and methods  To address these questions, we examined the relationship between passeriform richness and range size rarity of approximately 2300 bird species in 4889 1° New World grid cells, and the distance of the cells to boundaries between adjacent plant-based ecoregions.
Results  Areas nearer to boundary regions between ecoregions not only had more bird species, but also scored more highly in terms of species rarity. The range centres of the rarest 10% of species were distributed significantly closer to boundaries between ecoregions than were species in general. This pattern persisted for rarity when we divided the New World into three latitudinal belts and analysed each separately, and when we excluded the Andes. It also persisted when compared with randomly generated ecoregion polygons.
Main conclusions  The findings of this work suggest that transitional environments harbour many rare species, in addition to high richness. Consequently areas of biotic transition should be highly valued as biodiversity centres and need to be included in future global conservation analyses and decisions.  相似文献   

20.
Human activity and land‐use change are dramatically altering the sizes, geographical distributions and functioning of biological populations worldwide, with tremendous consequences for human well‐being. Yet our ability to measure, monitor and forecast biodiversity change – crucial to addressing it – remains limited. Biodiversity monitoring systems are being developed to improve this capacity by deriving metrics of change from an array of in situ data (e.g. field plots or species occurrence records) and Earth observations (EO; e.g. satellite or airborne imagery). However, there are few ecologically based frameworks for integrating these data into meaningful metrics of biodiversity change. Here, I describe how concepts of pattern and scale in ecology could be used to design such a framework. I review three core topics: the role of scale in measuring and modelling biodiversity patterns with EO, scale‐dependent challenges linking in situ and EO data and opportunities to apply concepts of pattern and scale to EO to improve biodiversity mapping. From this analysis emerges an actionable approach for measuring, monitoring and forecasting biodiversity change, highlighting key opportunities to establish EO as the backbone of global‐scale, science‐driven conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号