首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Most basophilic serine/threonine kinases preferentially phosphorylate substrates with Arg at P-3 but vary greatly in additional strong preference for Arg at P-2 or P-5. The structural basis for P-2 or P-5 preference is known for two AGC kinases (family of protein kinases A, G, and C) in which it is mediated by a single pair of acidic residues (PEN+1 and YEM+1). We sought a general understanding of P-2 and P-5 Arg preference. The strength of Arg preference at each position was assessed in 15 kinases using a new degenerate peptide library approach. Strong P-2 or P-5 Arg preference occurred not only in AGC kinases (7 of 8 studied) but also in calmodulin-dependent protein kinase (CAMK, 1 of 3) and Ste20 (STE) kinases (2 of 4). Analysis of sequence conservation demonstrated almost perfect correlation between (a) strong P-2 or P-5 Arg preference and (b) acidic residues at both PEN+1 and YEM+1. Mutation of two kinases (PKC-theta and p21-activated kinase 1 (PAK1)) confirmed critical roles of both PEN+1 and YEM+1 residues in determining strong R-2 Arg preference. PAK kinases were unique in having exceptionally strong Arg preference at P-2 but lacking strong Arg preference at P-3. Preference for Arg at P-2 was so critical to PAK recognition that PAK1 activity was virtually eliminated by mutating the PEN+1 or YEM+1 residues. The fact that this specific pair of acidic residues has been repeatedly and exclusively used by evolution for conferring strong Arg preference at two different substrate positions in three different kinase families implies it is uniquely well suited to mediate sufficiently good substrate binding without unduly restricting product release.  相似文献   

2.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

3.
The specificity of casein kinase II has been further defined by analyzing the kinetics of phosphorylation reactions using a number of different synthetic peptides as substrates. The best peptide substrates are those in which multiple acidic amino acids are present on both sides of the phosphorylatable serine or threonine. Acidic residues on the NH2-terminal side of the serine (threonine) greatly enhance the kinetic constants but are not absolutely required. Acidic residues on the COOH-terminal side of the serine (threonine) are absolutely required. One position for which the occupation of an acidic residue is especially critical is the position located 3 residues to the COOH terminus of the phosphate acceptor site, although the presence of an acidic amino acid in the positions that are 4 or 5 residues removed may also provide an appropriate structure that will serve as a substrate for the kinase. Aspartate serves as a better amino acid determinant than glutamate. A relatively short sequence of amino acids surrounding the phosphate acceptor site appears to serve as the basis for the specificity of casein kinase II. The peptides in this study were also assayed with casein kinase I and the casein kinase from the mammary gland so that the specificities of these kinases could be compared to that of casein kinase II.  相似文献   

4.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

5.
20 synthetic peptides, each of which includes a tyrosyl residue flanked by either neutral or acidic amino acids in different proportions and at variable positions, have been employed as model substrates for investigation of the site specificity of three tyrosine protein kinases previously isolated from spleen [Brunati, A. M. & Pinna, L. A. (1988) Eur. J. Biochem. 172, 451-457] and conventionally termed TPK-I, TPK-IIB and TPK-III. Comparison of the phosphorylation efficiencies shows that each tyrosine protein kinase is considerably different from the others in both the stringency and the nature of its specificity determinants. By considering, in particular, the kinetic constants obtained with the pentapeptides AAYAA, EEYAA, AEYAA, EAYAA, with the tetrapeptides AYAA and EYAA and with the tripeptides AYA and EYA, it turns out that N-terminal acidic residue(s) are only essential with TPK-IIB for efficient phosphorylation with multiple residues displaying a synergistic effect. The very similar Km (130 microM) but 14-fold-different Vmax values with YEEEEE vs. EEEEEY indicate that an N-terminal rather than C-terminal location of acidic residues is required for a high phosphorylation rate with, though not for binding to TPK-IIB. Acidic residues decrease the phosphorylation rate with TPK-I, a kinase related to the src family which is immunologically indistinguishable from the lyn TPK; they are nearly ineffective, however, with TPK-III, the least specific of the tyrosine protein kinases, which exhibits appreciable activity toward tripeptides and dipeptides like GAY and AY which are not significantly affected by TPK-I and TPK-IIB. While the peptide substrate specificity of TPK-I is similar to that of TPK-IIA, a spleen tyrosine protein kinase previously considered [Brunati, A. M., Marchiori, F., Ruzza, P., Calderan, A., Borin, G. & Pinna, L. A. (1989) FEBS Lett. 254, 145-149], the remarkable requirement of TPK-IIB alone for acidic peptides may suggest the involvement of this enzyme, which is also unique in its failure to autophosphorylate, in the phosphorylation of the highly conserved and quite acidic phosphoacceptor sites of the src family protein kinases.  相似文献   

6.
The beta-adrenergic receptor kinase (beta-ARK) phosphorylates G protein coupled receptors in an agonist-dependent manner. Since the exact sites of receptor phosphorylation by beta-ARK are poorly defined, the identification of substrate amino acids that are critical to phosphorylation by the kinase are also unknown. In this study, a peptide whose sequence is present in a portion of the third intracellular loop region of the human platelet alpha 2-adrenergic receptor is shown to serve as a substrate for beta-ARK. Removal of the negatively charged amino acids surrounding a cluster of serines in this alpha 2-peptide resulted in a complete loss of phosphorylation by the kinase. A family of peptides was synthesized to further study the role of acidic amino acids in peptide substrates of beta-ARK. By kinetic analyses of the phosphorylation reactions, beta-ARK exhibited a marked preference for negatively charged amino acids localized to the NH2-terminal side of a serine or threonine residue. While there were no significant differences between glutamic and aspartic acid residues, serine-containing peptides were 4-fold better substrates than threonine. Comparing a variety of kinases, only rhodopsin kinase and casein kinase II exhibited significant phosphorylation of the acidic peptides. Unlike beta-ARK, RK preferred acid residues localized to the carboxyl-terminal side of the serine. A feature common to beta-ARK and RK was a much greater Km for peptide substrates as compared to that for intact receptor substrates.  相似文献   

7.
The hexapeptides AcSer-Glu-Glu-Glu-Val-Glu and Ser-Glu-Glu-Glu-Glu-Glu, reminiscent of the sites phosphorylated by type-2 casein kinase TS in troponin T and glycogen synthase, respectively, have been synthesized and tested as phosphorylatable substrates for casein kinase TS as well as for other protein kinases. Both peptides are readily phosphorylated by casein kinase TS but not, to any detectable extent, by either cAMP-dependent protein kinase or phosphorylase kinase. Phosphorylation by type-1 casein kinase S was almost negligible. On the other hand the hexapeptide Ser-Glu-Glu-Glu-Ala-Ala is phosphorylated much more slowly and the hexapeptide Ser-Glu-Glu-Ala-Ala-Ala is almost unaffected by casein kinase TS. While the Vmax values of casein kinase TS with the acidic hexapeptides are comparable to those obtained with the corresponding protein substrates, the apparent Km values for the peptides are about two orders of magnitude higher than those for the protein substrates. The heptapeptide Arg-Ser-Glu-Glu-Glu-Val-Glu is a very poor substrate of casein kinase TS in comparison with the corresponding hexapeptide lacking the N-terminal Arg; it is, however, a competitive inhibitor toward the protein substrates, exhibiting a Ki similar to those of Ser-Glu-Glu-Glu-Glu-Glu and (Glu)5 which, in turn, are one order of magnitude higher than that of (Glu)10. It is concluded that the minimum structural requirement of type-2 casein kinases consists of a phosphorylatable residue followed by an acidic cluster, whose length is critical for the binding to the enzyme. Additional residues on the N-terminal side are not required, but their nature can influence the transphosphorylation reaction considerably.  相似文献   

8.
Protein tyrosine phosphatase 1B (PTP1B) displays a preference for peptides containing acidic as well as aromatic/aliphatic residues immediately NH(2)-terminal to phosphotyrosine. The structure of PTP1B bound with DADEpYL-NH(2) (EGFR(988)(-)(993)) offers a structural explanation for PTP1B's preference for acidic residues [Jia, Z., Barford, D., Flint, A. J., and Tonks, N. K. (1995) Science 268, 1754-1758]. We report here the crystal structures of PTP1B in complex with Ac-ELEFpYMDYE-NH(2) (PTP1B.Con) and Ac-DAD(Bpa)pYLIPQQG (PTP1B.Bpa) determined to 1.8 and 1.9 A resolution, respectively. A structural analysis of PTP1B.Con and PTP1B.Bpa shows how aromatic/aliphatic residues at the -1 and -3 positions of peptide substrates are accommodated by PTP1B. A comparison of the structures of PTP1B.Con and PTP1B.Bpa with that of PTP1B.EGFR(988)(-)(993) reveals the structural basis for the plasticity of PTP1B substrate recognition. PTP1B is able to bind phosphopeptides by utilizing common interactions involving the aromatic ring and phosphate moiety of phosphotyrosine itself, two conserved hydrogen bonds between the Asp48 carboxylate side chain and the main chain nitrogens of the pTyr and residue 1, and a third between the main chain nitrogen of Arg47 and the main chain carbonyl of residue -2. The ability of PTP1B to accommodate both acidic and hydrophobic residues immediately NH(2)-terminal to pTyr appears to be conferred upon PTP1B by a single residue, Arg47. Depending on the nature of the NH(2)-terminal amino acids, the side chain of Arg47 can adopt one of two different conformations, generating two sets of distinct peptide binding surfaces. When an acidic residue is positioned at position -1, a preference for a second acidic residue is also observed at position -2. However, when a large hydrophobic group occupies position -1, Arg47 adopts a new conformation so that it can participate in hydrophobic interactions with both positions -1 and -3.  相似文献   

9.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

10.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

11.
Although the Ca2+/phospholipid-dependent protein kinase, protein kinase C, has a broad substrate specificity in vitro, the enzyme appears considerably less promiscuous in vivo. To date only a handful of proteins have been identified as physiological substrates for this protein kinase. In order to determine the basis for this selectivity for substrates in intact cells, we have probed the substrate primary sequence requirements of protein kinase C using synthetic peptides corresponding to sites of phosphorylation from four of the known physiological substrates. We have also identified the acetylated N-terminal serine of chick muscle lactate dehydrogenase as an in vitro site of phosphorylation for this protein kinase. These comparative studies have demonstrated that, in vivo, the enzyme exhibits a preference for one basic residue C-terminal to the phosphorylatable residue, as in the sequence: Ser/Thr-Xaa-Lys/Arg, where Xaa is usually an uncharged residue. Additional basic residues, both N and C-terminal to the target amino acid, enhance the Vmax and Km parameters of phosphorylation. None of the peptides based on physiological phosphorylation sites of protein kinase C was an efficient substrate of cAMP-dependent protein kinase, emphasizing the distinct site-recognition selectivities of these two pleiotropic protein kinases. The favorable kinetic parameters of several of the synthetic peptides, coupled with their selectivity for phosphorylation by protein kinase C, will facilitate the assay of this enzyme in the presence of other protein kinases in tissue and cell extracts.  相似文献   

12.
Tyrosine-protein kinase, phosphorylating tyrosine residues of transmembrane band 3 protein, has been partially purified from human erythrocyte cytosol by DEAE-Sepharose chromatography followed by heparin-Sepharose chromatography. Such a Tyr-protein kinase (36 kDa), as distinct from the Ser/Thre-protein kinases (casein kinase S and TS), appears to display a broader site specificity than does the previously described human erythrocyte P-Tyr-protein phosphatase, dephosphorylating band 3 protein. That is, it is able to phosphorylate not only the highly acidic copolymer poly(Glu-Tyr) but also angiotensin II, lacking an acidic amino acid sequence around the target Tyr residue. Moreover, the phosphorylation of these two substrates exhibits a different pH dependence and a different response to NaCl and 2,3-bisphosphoglycerate. These results suggest that in intact erythrocytes the cytosolic Tyr-protein kinase might phosphorylate band 3 not only on Tyr-8, surrounded by several acidic side-chains (as demonstrated preferentially to occur in isolated ghosts), but also on other Tyr residues surrounded by other amino acid sequences.  相似文献   

13.
Protein kinase C, purified to near homogeneity from the brain, has been tested toward a variety of synthetic peptide substrates including different phosphorylatable residues. While it proved totally inactive toward the tyrosyl peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly, as well as toward several more or less acidic seryl peptides, it phosphorylates with a Ca2+/phospholipid-dependent mechanism, at seryl and/or threonyl residues, many basic peptides, some of which are also good substrates for cAMP-dependent protein kinase (A-kinase). Among the peptides tested, however, the best substrate for protein kinase C, with kinetic constants comparable to those of histones, is the nonapeptide Gly-Ser-Arg6-Tyr, which is not a substrate for A-kinase. Moreover, although the peptide Pro-Arg5-Ser-Ser-Arg-Pro-Val-Arg is a good substrate for both kinases, its derivative with ornitines replacing arginines is phosphorylated only by protein kinase C. Some typical substrates of A-kinase on the other hand, like the peptides Phe-Arg2-Leu-Ser-Ile-Ser-Thr-Glu-Ser and Arg2-Ala-Ser-Val-Ala, are phosphorylated by protein kinase C rather slowly and with unfavourable kinetic constants. It is concluded that, while both protein kinase C and A-kinase need basic groups close to the phosphorylatable residues, their primary structure determinants are quite distinct.  相似文献   

14.
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be inactivated by phosphorylation of Ser-158 by calmodulin-like domain protein kinases (CDPKs) or SNF1-related protein kinases (SnRK1) in vitro. While the phosphorylation site sequence is relatively conserved, most of the deduced sequences of SPS from dicot species surrounding the Ser-158 regulatory phosphorylation site contain a Pro residue at P-4 (where P is the phosphorylated Ser); spinach is the exception and contains an Arg at P-4. We show that a Pro at P-4 selectively inhibits phosphorylation of the peptide by a CDPK relative to a SnRK1. The presence of a Pro at P-4, by allowing a tight turn in the peptide substrate, may interfere with proper binding of residues at P-5 and beyond. Both kinases had greater activity with peptides having basic residues at P-6 and P+5 (in addition to the known requirement for an Arg at P-3/P-4), and when the residue at P-6 was a His, the pH optimum for phosphorylation of the peptide was acid shifted. The results are used to predict proteins that may be selectively phosphorylated by SnRK1s (as opposed to CDPKs), such as SPS in dicot species, or may be phosphorylated in a pH-dependent manner.  相似文献   

15.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

16.
NAD kinase phosphorylates NAD+ to form NADP+ and is strictly specific to NAD+, whereas NADH kinase phosphorylates both NAD+ and NADH, thereby showing relaxed substrate specificity. Based on their primary and tertiary structures, the difference in the substrate specificities between NAD and NADH kinases was proposed to be caused by one aligned residue: Gly or polar amino acid (Gln or Thr) in five NADH kinases and a charged amino acid (Arg) in two NAD kinases. The substitution of Arg with Gly in the two NAD kinases relaxed the substrate specificity (i.e. converted the NAD kinases to NADH kinases). The substitution of Arg in one NAD kinase with polar amino acids also relaxed the substrate specificity, whereas substitution with charged and hydrophobic amino acids did not show a similar result. In contrast, the substitution of Gly with Arg in one NADH kinase failed to convert it to NAD kinase. These results suggest that a charged or hydrophobic amino acid residue in the position of interest is crucial for strict specificity of NAD kinases to NAD+, whereas Gly or polar amino acid residue is not the sole determinant for the relaxed substrate specificity of NADH kinases. The significance of the conservation of the residue at the position in 207 NAD kinase homologues is also discussed.  相似文献   

17.
Site-selective dephosphorylation of receptor tyrosine kinases contributes to receptor regulation. The receptor-like protein tyrosine phosphatase DEP-1 site-selectively dephosphorylates the PDGF beta-receptor. DEP-1 dephosphorylation of original and chimeric phospho-peptides spanning the preferred pY1021 and the less preferred pY857 and pY562 sites was analyzed. Double substitutions of basic residues at -4 and +3 of pY857 and pY562 peptides improved affinity. Substitutions of single amino acids indicated preference for an acidic residue at position -1 and a preference against a basic residue at position +3. DEP-1 site-selective dephosphorylation of PDGF beta-receptor is thus determined by the primary sequence surrounding phosphorylation sites and involves interactions with residues spanning at least between positions -1 and +3.  相似文献   

18.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases. In order to elucidate the mechanism of substrate recognition by CaMKPase, we chemically synthesized a variety of phosphopeptide analogs and carried out kinetic analysis using them as CaMKPase substrates. This is the first report using systematically synthesized phosphopeptides as substrates for kinetic studies on substrate specificities of protein Ser/Thr phosphatases. CaMKPase was shown to be a protein Ser/Thr phosphatase having a strong preference for a phospho-Thr residue. A Pro residue adjacent to the dephosphorylation site on the C-terminal side and acidic clusters around the dephosphorylation site had detrimental effects on dephosphorylation by CaMKPase. Deletion analysis of a model substrate peptide revealed that the minimal length of the substrate peptide was only 2 to 3 amino acid residues including the dephosphorylation site. The residues on the C-terminal side of the dephosphorylation site were not essential for dephosphorylation, whereas the residue adjacent to the dephosphorylation site on the N-terminal side was essential. Ala-scanning analysis suggested that CaMKPase did not recognize a specific motif around the dephosphorylation site. Myosin light chain phosphorylated by protein kinase C and Erk2 phosphorylated by MEK1 were poor substrates for CaMKPase, while a synthetic phosphopeptide corresponding to the sequence around the phosphorylation site of the former was not dephosphorylated by CaMKPase but that of the latter was fairly good substrate. These data suggest that substrate specificity of CaMKPase is determined by higher-order structure of the substrate protein rather than by the primary structure around its dephosphorylation site. Use of phosphopeptide substrates also revealed that poly-L-lysine, an activator for CaMKPase, activated the enzyme mainly through increase in the V(max) values.  相似文献   

19.
Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.  相似文献   

20.
The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s−1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号