首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptation depends greatly on the distribution of mutation fitness effects (DMFE), but the phenotypic expression of mutations is often environment dependent. The environments faced by multihost pathogens are mostly governed by their hosts and therefore measuring the DMFE on multiple hosts can inform on the likelihood of short‐term establishment and longer term adaptation of emerging pathogens. We explored this by measuring the growth rate of 36 mutants of the lytic bacteriophage φX174 on two host backgrounds, Escherichia coli (EcC) and Salmonella typhimurium (StGal). The DMFE showed higher mean and variance on EcC than on StGal. Most mutations were either deleterious or neutral on both hosts, but a greater proportion of mutations were deleterious on StGal. We identified two mutations with beneficial fitness effects on EcC that were neutral on StGal. Host‐specific differences in fitness were associated with particular functional classes of genes involved in the initial stages of infection in accordance with previous studies of host specificity. Overall, there was a positive correlation between the effects of mutations on each host, suggesting that most new mutations will have general, rather than host‐specific fitness effects. We consider these results in light of simple fitness landscape models of adaptation and discuss the relevance of context‐dependent DMFE for multihost pathogens.  相似文献   

2.
For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and the severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. Using Tobacco etch potyvirus (TEV) and four natural hosts, we have designed an evolution experiment whose strength and novelty are the use of complex multicellular host organism as hosts and a high level of replication of different evolutionary histories and lineages. A pattern of local adaptation, characterized by a higher infectivity and virulence on host(s) encountered during the experimental evolution was found. Local adaptation only had a cost in terms of performance on other hosts in some cases. We could not verify the existence of a cost for generalists, as expected to arise from antagonistic pleiotropy and other genetic mechanisms generating a fitness trade-off between hosts. This observation confirms that this classical theoretical prediction lacks empirical support. We discuss the reasons for this discrepancy between theory and experiment in the light of our results. The analysis of full genome consensus sequences of the evolved lineages established that all mutations shared between lineages were host specific. A low degree of parallel evolution was observed, possibly reflecting the various adaptive pathways available for TEV in each host. Altogether, these results reveal a strong adaptive potential of TEV to new hosts without severe evolutionary constraints.  相似文献   

3.
The existence of genetic variation for resistance in host populations is assumed to be essential to the spread of an emerging virus. Models predict that the rate of spread slows down with the increasing frequency and higher diversity of resistance alleles in the host population. We have been using the experimental pathosystem Arabidopsis thaliana—tobacco etch potyvirus (TEV) to explore the interplay between genetic variation in host''s susceptibility and virus diversity. We have recently shown that TEV populations evolving in A. thaliana ecotypes that differ in susceptibility to infection gained within-host fitness, virulence and infectivity in a manner compatible with a gene-for-gene model of host–parasite interactions: hard-to-infect ecotypes were infected by generalist viruses, whereas easy-to-infect ecotypes were infected by every virus. We characterized the genomes of the evolved viruses and found cases of host-driven convergent mutations. To gain further insights in the mechanistic basis of this gene-for-gene model, we have generated all viral mutations individually as well as in specific combinations and tested their within-host fitness effects across ecotypes. Most of these mutations were deleterious or neutral in their local ecotype and only a very reduced number had a host-specific beneficial effect. We conclude that most of the mutations fixed during the evolution experiment were so by drift or by selective sweeps along with the selected driver mutation. In addition, we evaluated the ruggedness of the underlying adaptive fitness landscape and found that mutational effects were mostly multiplicative, with few cases of significant epistasis.  相似文献   

4.
Male-killing bacteria are thought to persist in host populations by vertical transmission and conferring direct and/or indirect fitness benefits to their hosts. Here, we test the role of indirect fitness benefits accrued from resource reallocation in species that engage in sibling egg cannibalism. We found that a single-egg meal significantly increased larval survival in 12 ladybird species, but the value of an egg (to survival) differed substantially between species. Next, we tested the impact of three male-killing bacteria on larval survival in one ladybird species, Adalia bipunctata. Spiroplasma reduced larval survival, whereas Wolbachia and Rickettsia had no effect. However, Spiroplasma-infected larvae showed the greatest response to a single-egg meal. The indirect fitness benefit obtained from a single egg is thus so large that even male-killing bacteria with direct fitness costs can persist in host populations. This study supports the hypothesis that fitness compensation via resource reallocation can explain male-killing bacteria persistence.  相似文献   

5.
The Rubisco activase amino acid sequences of spinach and tobacco are 79% identical, yet the tobacco protein does not facilitate the activation of the uncarbamylated, ribulose bisphosphate bound form of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and vice versa. In contrast, combinations of the spinach Rubisco activase with Rubisco from non-Solanaceae species and combinations of tobacco Rubisco activase with Rubisco from other Solanaceae species are almost as effective as the analogous combination. To examine the basis of the preference of an activase protein for either Solanaceae or non-Solanaceae Rubisco, several recombinant chimeric proteins were obtained by combining regions from the cDNAs of spinach and tobacco activase and expression in Escherichia coli. The chimeric proteins were analyzed for ATP hydrolysis and ability to activate spinach and tobacco Rubisco. Comparisons of Rubisco preference with composition of the various activase chimeras indicate that the major determinants of Rubisco preference seem to be localized in the carboxyl-terminal region.  相似文献   

6.
We investigated the prevalence, transmission mode and fitness effects of infections by obligatory intracellular, microsporidian parasites in the freshwater amphipod Gammarus roeseli. We found three different microsporidia species in this host, all using transovarial (vertical) transmission. All three coexist at different prevalences in two host populations, but bi-infected individuals were rarely found, suggesting no (or very little) horizontal transmission. It is predicted that vertically-transmitted parasites may exhibit sex-specific virulence in their hosts, or they may have either positive or neutral effects on host fitness. All three species differed in their transmission efficiency and infection intensity and our data suggest that these microsporidia exert sex-specific virulence by feminising male hosts. The patterns of infection we found exhibit convergent evolution with those of another amphipod host, Gammarus duebeni. Interestingly, we found that infected females breed earlier in the reproductive season than uninfected females. This is the first study, to our knowledge, to report a positive effect of microsporidian infection on female host reproduction.  相似文献   

7.
In the active form of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC ), a carbamate at lysine 201 binds Mg(2+), which then interacts with the carboxylation transition state. Rubisco activase facilitates this spontaneous carbamylation/metal-binding process by removing phosphorylated inhibitors from the Rubisco active site. Activase from Solanaceae plants (e.g. tobacco) fails to activate Rubisco from non-Solanaceae plants (e.g. spinach and Chlamydomonas reinhardtii), and non-Solanaceae activase fails to activate Solanaceae Rubisco. Directed mutagenesis and chloroplast transformation previously showed that a proline 89 to arginine substitution on the surface of the large subunit of Chlamydomonas Rubisco switched its specificity from non-Solanaceae to Solanaceae activase activation. To define the size and function of this putative activase binding region, substitutions were created at positions flanking residue 89. As in the past, these substitutions changed the identities of Chlamydomonas residues to those of tobacco. Whereas an aspartate 86 to arginine substitution had little effect, aspartate 94 to lysine Rubisco was only partially activated by spinach activase but now fully activated by tobacco activase. In an attempt to eliminate the activase/Rubisco interaction, proline 89 was changed to alanine, which is not present in either non-Solanaceae or Solanaceae Rubisco. This substitution also caused reversal of activase specificity, indicating that amino acid identity alone does not determine the specificity of the interaction.  相似文献   

8.
Recent studies on transposable elements (TEs) have shed light on the mechanisms that have shaped their evolution. In addition to accumulating nucleotide substitutions over evolutionary time, TEs appear to be especially prone to genetic rearrangements and vertical transmissions across even distantly related species. As a consequence of replicating in host genomes, TEs have a significant mutational effect on their hosts. Although most TE-insertion mutations seem to exert a negative effect on host fitness, a growing body of evidence indicates that some TE-mediated genetic changes have become established features of host species genomes indicating that TEs can contribute significantly to organismic evolution.  相似文献   

9.
It has been well established that populations of RNA viruses transmitted throughout serial bottlenecks suffer from significant fitness declines as a consequence of the accumulation of deleterious mutations by the onset of Muller's ratchet. Bottlenecks are unavoidably linked to different steps of the infectious cycle of most plant RNA viruses, such as vector-mediated transmissions and systemic colonization of new leaves. Here we report evidence for fitness declines by the accumulation of deleterious mutations in the potyvirus Tobacco etch virus (TEV). TEV was inoculated into the nonsystemic host Chenopodium quinoa, and local lesions were isolated and used to initiate 20 independent mutation accumulation lineages. Weekly, a random lesion from each lineage was isolated and used to inoculate the next set of plants. At each transfer, the Malthusian growth rate was estimated. After 11 consecutive transfers, all lineages suffered significant fitness losses, and one even became extinct. The average rate of fitness decline was 5% per day. The average pattern of fitness decline was consistent with antagonistic epistasis between deleterious mutations, as postulated for antiredundant genomes. Temporal fitness fluctuations were not explained by random noise but reflected more complex underlying processes related to emergence and self-organization phenomena.  相似文献   

10.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

11.
H. W. Deng  M. Lynch 《Genetics》1996,144(1):349-360
The rate and average effects of spontaneous deleterious mutations are important determinants of the evolution of breeding systems and of the vulnerability of small populations to extinction. Nevertheless, few attempts have been made to estimate the properties of such mutations, and those studies that have been performed have been extremely labor intensive, relying on long-term, laboratory mutation-accumulation experiments. We present an alternative to the latter approach. For populations in which the genetic variance for fitness is a consequence of selection-mutation balance, the mean fitness and genetic variance of fitness in outbred and inbred generations can be expressed as simple functions of the genomic mutation rate, average homozygous effect and average dominance coefficient of new mutations. Using empirical estimates for the mean and genetic variance of fitness, these expressions can then be solved to obtain joint estimates of the deleterious-mutation parameters. We employ computer simulations to evaluate the degree of bias of the estimators and present some general recommendations on the application of the technique. Our procedures provide some hope for obtaining estimates of the properties of deleterious mutations from a wide phylogenetic range of species as well as a mechanism for testing the validity of alternative models for the maintenance of genetic variance for fitness.  相似文献   

12.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

13.
美洲斑潜蝇的寄主植物种类、适合度及其为害性的评价   总被引:16,自引:2,他引:14  
在山西省调查结果,美洲斑潜蝇的寄生有29种栽培植物,11种野生植物,它们分属16个科,其中以葫芦科,茄科和豆科的种类居多。应用选择系数法和适合性指数法定量测定了16种常见寄生对美洲斑潜蝇的适合度,建立了选择强度与适合度估测模。根据适合度将美洲斑潜蝇的寄生植物划分为3个类型,即适宜寄主、较适宜寄主和次要寄主,在上述研究的基础上,测定了该在不同寄主上的虫道面积和蛹的重量,明确了不同寄主植物对害虫发育的  相似文献   

14.
Synergistic epistasis for fitness is often assumed in models of how selection acts on the frequency and distribution of deleterious mutations. Evidence for synergistic epistasis would exist if the logarithm of fitness declines more quickly with number of deleterious mutations, than predicted by a linear decline. This can be studied indirectly by quantifying the effect of different levels of inbreeding on fitness. Here, six sets (different genetic backgrounds) of three increasingly inbred Daphnia magna clones were used to assess their relative fitness according to changes in frequency in a competition experiment against a tester clone. A novelty of the mating procedure was that the inbreeding coefficients (F) of the three clones belonging to each set increased in steps of 0.25 independent of the (unknown) inbreeding coefficient of the common ancestor. The equal increase of the inbreeding coefficients is important, because deviations influence the quantification of inbreeding depression, its variance and the detection of epistasis. In a simple mathematical model we show that when working with a partially inbred population inbreeding depression is underestimated, the variance of fitness is increased, and the detection of epistasis more difficult. Further, to examine whether an interaction between inbreeding and parasitism exists, each inbred clone was tested with and without a microsporidium infection (Octosporea bayeri). We found a nonlinear decrease of the logarithm of fitness across the three levels of inbreeding, indicating synergistic epistasis. The interaction term between parasitism and inbreeding was not significant. Our results suggest that deleterious mutations may be purged effectively once the level of inbreeding is high, but that parasitism seems not to influence this effect.  相似文献   

15.
Insights into symbiosis between eukaryotic hosts and their microbiomes have shifted paradigms on what determines host fitness, ecology, and behavior. Questions remain regarding the roles of host versus environment in shaping microbiomes, and how microbiome composition affects host fitness. Using a model system in ecology, phytoplankton, we tested whether microbiomes are host-specific, confer fitness benefits that are host-specific, and remain conserved in time in their composition and fitness effects. We used an experimental approach in which hosts were cleaned of bacteria and then exposed to bacterial communities from natural environments to permit recruitment of microbiomes. We found that phytoplankton microbiomes consisted of a subset of taxa recruited from these natural environments. Microbiome recruitment was host-specific, with host species explaining more variation in microbiome composition than environment. While microbiome composition shifted and then stabilized over time, host specificity remained for dozens of generations. Microbiomes increased host fitness, but these fitness effects were host-specific for only two of the five species. The shifts in microbiome composition over time amplified fitness benefits to the hosts. Overall, this work solidifies the importance of host factors in shaping microbiomes and elucidates the temporal dynamics of microbiome compositional and fitness effects.Subject terms: Microbial ecology, Freshwater ecology  相似文献   

16.
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.  相似文献   

17.
Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage''s host attachment protein opposite a putative hydrophobic anchoring domain.  相似文献   

18.
Sympatric speciation can arise as a result of disruptive selection with assortative mating as a pleiotropic by-product. Studies on host choice, employing artificial neural networks as models for the host recognition system in exploiters, illustrate how disruptive selection on host choice coupled with assortative mating can arise as a consequence of selection for specialization. Our studies demonstrate that a generalist exploiter population can evolve into a guild of specialists with an 'ideal free' frequency distribution across hosts. The ideal free distribution arises from variability in host suitability and density-dependent exploiter fitness on different host species. Specialists are less subject to inter-phenotypic competition than generalists and to harmful mutations that are common in generalists exploiting multiple hosts.When host signals used as cues by exploiters coevolve with exploiter recognition systems, our studies show that evolutionary changes may be continuous and cyclic. Selection changes back and forth between specialization and generalization in the exploiters, and weak and strong mimicry in the hosts, where non-defended hosts use the host investing in defence as a model. Thus, host signals and exploiter responses are engaged in a red-queen mimicry process that is ultimately cyclic rather then directional. In one phase, evolving signals of exploitable hosts mimic those of hosts less suitable for exploitation (i.e. the model). Signals in the model hosts also evolve through selection to escape the mimic and its exploiters. Response saturation constraints in the model hosts lead to the mimic hosts finally perfecting its mimicry, after which specialization in the exploiter guild is lost. This loss of exploiter specialization provides an opportunity for the model hosts to escape their mimics. Therefore, this cycle then repeats.We suggest that a species can readily evolve sympatrically when disruptive selection for specialization on hosts is the first step. In a sexual reproduction setting, partial reproductive isolation may first evolve by mate choice being confined to individuals on the same host. Secondly, this disruptive selection will favour assortative mate choice on genotype, thereby leading to increased reproductive isolation.  相似文献   

19.
This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV‐At17b), adapted to Arabidopsis thaliana ecotype Ler‐0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host‐driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard‐to‐infect ecotypes were infected by generalist viruses whereas easy‐to‐infect ecotypes were infected by all viruses, as predicted by a gene‐for‐gene model of infection.  相似文献   

20.
Surprisingly little is known about what determines a parasite's host range, which is essential in enabling us to predict the fate of novel infections. In this study, we evaluate the importance of both host and parasite phylogeny in determining the ability of parasites to infect novel host species. Using experimental lab assays, we infected 24 taxonomically diverse species of Drosophila flies (Diptera: Drosophilidae) with five different nematode species (Tylenchida: Allantonematidae: Howardula, Parasitylenchus), and measured parasite infection success, growth, and effects on female host fecundity (i.e., virulence). These nematodes are obligate parasites of mushroom-feeding Drosophila, particularly quinaria and testacca group species, often with severe fitness consequences on their hosts. We show that the potential host ranges of the nematodes are much larger than their actual ranges, even for parasites with only one known host species in nature. Novel hosts that are distantly related from the native host are much less likely to be infected, but among more closely related hosts, there is much variation in susceptibility. Potential host ranges differ greatly between the related parasite species. All nematode species that successfully infected novel hosts produced infective juveniles in these hosts. Most novel infections did not result in significant reductions in the fecundity of female hosts, with one exception: the host specialist Parasitylenchus nearcticus sterilized all quinaria group hosts, only one of which is a host in nature. The large potential host ranges of these parasites, in combination with the high potential for host colonization due to shared mushroom breeding sites, explain the widespread host switching observed in comparisons of nematode and Drosophila phylogenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号