首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.  相似文献   

2.
Intermittent treatment with parathyroid hormone (PTH) increases bone formation and prevents bone loss in hindlimb-unloaded (HLU) rats. However, the mechanisms of action of PTH are incompletely known. To explore possible interactions between weight bearing and PTH, we treated 6-mo-old weight-bearing and HLU rats with a human therapeutic dose (1 microg.kg(-1).day(-1)) of human PTH(1-34) (hPTH). Cortical and cancellous bone formation was measured in tibia at the diaphysis proximal to the tibia-fibula synostosis and at the proximal metaphysis, respectively. Two weeks of hindlimb unloading resulted in a dramatic decrease in the rate of bone formation at both skeletal sites, which was prevented by PTH treatment at the cancellous site only. In contrast, PTH treatment increased cortical as well as cancellous bone formation in weight-bearing rats. Two-way ANOVA revealed that hPTH and HLU had independent and opposite effects on all histomorphometric indexes of bone formation [mineral apposition rate (MAR), double-labeled perimeter (dLPm), and bone formation rate (BFR)] at both skeletal sites. The bone anabolic effects of weight bearing and hPTH on dLPm and BFR at the cortical site were additive, as were the effects on MAR at the cancellous site. In contrast, weight bearing and hPTH resulted in synergistic increases in cortical bone MAR and cancellous bone dLPm and BFR. We conclude that weight bearing and PTH act cooperatively to increase bone formation by resulting in site-specific additive and synergistic increases in indexes of osteoblast number and activity, suggesting that weight-bearing exercise targeted to osteopenic skeletal sites may improve the efficacy of PTH therapy for osteoporosis.  相似文献   

3.
Intermittent administration stimulates bone formation, whereas sustained elevation of parathyroid hormone (PTH) as in hyperparathyroidism stimulates bone resorption. Even though PTH(1-34) is the only anabolic agent clinically approved for the treatment of osteoporosis, the molecular mechanism whereby PTH mediates these opposing effects depending on timing of administration is not well understood. In this study, we sought to determine the involvement of gap junctions and hemichannels, and the protein that forms them, connexin 43 (Cx43), in the effect of PTH(1-34) on osteoblast mineralization. The osteoblast-like cell line MLO-A5 that rapidly mineralizes in culture was used. Intermittent PTH enhances mineralization, whereas continuous PTH inhibits this process. The mineralization was significantly inhibited by 18 beta-glycyrrhetinic acid, an inhibitor known to block gap junctions and hemichannels. When the cells were treated with PTH(1-34), gap junctional coupling was increased; however, the degree of stimulation was similar between intermittent and continuous treatment. The permeabilization to dye was not detected under various intermittent or continuous PTH treatments. On the other hand, the overall level of Cx43 protein increased in response to continuous PTH treatment. In contrast, when the cells were subjected to intermittent treatment overall level of Cx43 was unchanged, but there was an increase of connexons associated with an increase in Cx43 expression on the cell surface. Our results suggest that Cx43 overall expression, connexon formation and cell surface expression are differentially regulated by intermittent and continuous PTH(1-34), implying the involvement of Cx43 and Cx43-forming channels in mediating the effects of PTH on bone formation.  相似文献   

4.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

5.
6.
Parathyroid hormone (PTH) stimulates both bone formation and resorption by activating diverse osteoblast signalling pathways. Upstream signalling for PTH stimulation of protein kinase C-alpha (PKCalpha) membrane translocation and subsequent expression of the pro-resorptive cytokine interleukin-6 (IL-6) was investigated in UMR-106 osteoblastic cells. PTH 1-34, PTH 3-34, PTHrP and PTH 1-31 stimulated PKCalpha translocation and IL-6 promoter activity. Pharmacologic intervention at the adenylyl cyclase (AC) pathway (forskolin, IBMX, PKI) failed to alter PTH 1-34- or PTH 3-34-stimulated PKCalpha translocation. The phosphoinositol-phospholipase C (PI-PLC) antagonist U73122 slightly decreased PTH 1-34-stimulated PKCalpha translocation; however, the control analogue U73343 acted similarly. Propranolol, an inhibitor of phosphatidic acid (PA) phosphohydrolase, decreased diacylglycerol (DAG) formation and attenuated PTH 1-34- and PTH 3-34-stimulated PKCalpha translocation and IL-6 promoter activity, suggesting a phospholipase D (PLD)-dependent mechanism. This is the first demonstration that PLD-mediated signalling leads to both PKC-alpha translocation and IL-6 promoter activation in osteoblastic cells.  相似文献   

7.
Cardiovascular disease, such as atherosclerosis, has been associated with reduced bone mineral density and fracture risk. A major etiologic factor in atherogenesis is believed to be oxidized phospholipids. We previously found that these phospholipids inhibit spontaneous osteogenic differentiation of marrow stromal cells, suggesting that they may account for the clinical link between atherosclerosis and osteoporosis. Currently, anabolic agents that promote bone formation are increasingly used as a new treatment for osteoporosis. It is not known, however, whether atherogenic phospholipids alter the effects of bone anabolic agents, such as bone morphogenetic protein (BMP)-2 and parathyroid hormone (PTH). Therefore we investigated the effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) on osteogenic signaling induced by BMP-2 and PTH in MC3T3-E1 cells. Results showed that ox-PAPC attenuated BMP-2 induction of osteogenic markers alkaline phosphatase and osteocalcin. Ox-PAPC also inhibited both spontaneous and BMP-induced expression of PTH receptor. Consistently, pretreatment of cells with ox-PAPC inhibited PTH-induced cAMP production and expression of immediate early genes Nurr1 and IL-6. Results from immunofluorescence and Western blot analyses showed that inhibitory effects of ox-PAPC on BMP-2 signaling were associated with inhibition of SMAD 1/5/8 but not p38-MAPK activation. These effects appear to be due to ox-PAPC activation of the ERK pathway, as the ERK inhibitor PD98059 reversed ox-PAPC inhibitory effects on BMP-2-induced alkaline phosphatase activity, osteocalcin expression, and SMAD activation. These results suggest that atherogenic lipids inhibit osteogenic signaling induced by BMP-2 and PTH, raising the possibility that hyperlipidemia and atherogenic phospholipids may interfere with anabolic therapy.  相似文献   

8.
9.
The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.  相似文献   

10.
Parathyroid hormone (PTH) has been viewed as catabolic for bone. Nevertheless, exogenous PTH is anabolic when administered intermittently, at a frequency that permits complete clearance between doses. In the fetus and neonate, endogenous PTH is required for normal trabecular bone formation. In older animals PTH produces net bone loss in fulfilling its calcium homeostatic role, whereas PTH-related peptide (PTHrP), acting in a paracrine/autocrine mode, is anabolic. The proliferative, differentiating, and anti-apoptotic effects of PTH on cells of the osteoblast lineage leading to anabolism can be direct, or indirect via release of local growth factors. The anabolic effect of PTH is also influenced by osteoclastic activity such that suppression of osteoclasts with anti-resorptive agents, concomitant to administering PTH, may enhance the anabolic effect by delaying a reactive osteoclastic response. In contrast, prolonged suppression of osteoclast activity prior to administering PTH appears to diminish molecular signals that increase the osteoblast pool and thereby reduces the anabolic efficacy of PTH. These observations may define the proper timing of the use of PTH as a therapeutic in diseases of bone loss. Finally, the capacity of exogenous PTH to modulate extra-osseous factors such as 1,25 dihydroxyvitamin D may also modulate its potency as an anabolic agent.  相似文献   

11.
Wu X  Pang L  Lei W  Lu W  Li J  Li Z  Frassica FJ  Chen X  Wan M  Cao X 《Cell Stem Cell》2010,7(5):571-580
The anabolic effects of parathyroid hormone (PTH) on bone formation are impaired by concurrent use of antiresorptive drugs. We found that the release of active transforming growth factor (TGF)-β1 during osteoclastic bone resorption is inhibited by alendronate. We showed that mouse Sca-1-positive (Sca-1(+)) bone marrow stromal cells are a skeletal stem cell subset, which are recruited to bone remodeling sites by active TGF-β1 in response to bone resorption. Alendronate inhibits the release of active TGF-β1 and the recruitment of Sca-1(+) skeletal stem cells for the bone formation. The observation was validated in a Tgfb1(-/-) mouse model, in which the anabolic effects of PTH on bone formation are diminished. The PTH-stimulated recruitment of injected mouse Sca-1(+) cells to the resorptive sites was inhibited by alendronate. Thus, inhibition of active TGF-β1 release by alendronate reduces the recruitment of Sca-1(+) skeletal stem cells and impairs the anabolic action of PTH in bone.  相似文献   

12.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   

13.
Preptin, a 34-amino acid residue peptide hormone is co-secreted with insulin from the β-pancreatic cells and is active in fuel metabolism. We have previously established that a shorter fragment of preptin, namely preptin-(1–16), stimulates bone growth by proliferation and increasing the survival rate of osteoblasts. This was demonstrated in both in vitro and in vivo models. These findings suggest that preptin-(1–16) could play an important role in the anabolic therapy of osteoporosis. However, due to the large size of the peptide it is not an ideal therapeutic agent. The aim of this study was to identify the shortest preptin analogue that retains or even increases the bone anabolic activity as compared to the parent preptin-(1–16) peptide. Truncations were made in a methodical manner from both the N-terminus and the C-terminus of the peptide, and the effect of these deletions on the resulting biological activity was assessed. In order to improve the enzymatic stability of the shortest yet active analogue identified, ruthenium-catalysed ring closing metathesis was used to generate a macrocyclic peptide using allylglycine residues as handles for ring formation. We have successfully identified a short 8-amino acid preptin (1–8) fragment that retains an anabolic effect on the proliferation of primary rat osteoblasts and enhances bone nodule formation. Preptin (1–8) is a useful lead compound for the development of orally active therapeutics for the treatment of osteoporosis.  相似文献   

14.
We have reported previously that parathyroid hormone (PTH) acts on cultured bone cells to stimulate creatine kinase (CK) activity and [3H]thymidine incorporation into DNA via phosphoinositide turnover, in addition to its other actions via increased cyclic AMP production. We also found that mid-region fragments of PTH stimulate [3H]thymidine incorporation into avian chondrocytes. In the present study of mammalian systems, we demonstrate differential effects of defined synthetic PTH fragments on CK activity and DNA synthesis, as compared with cyclic AMP production, in osteoblast-enriched embryonic rat calvaria cell cultures, in an osteoblast-like clone of rat osteosarcoma cells (ROS 17/2.8) and in chondroblasts from rat epiphysial cartilage cell cultures. Unlike full-length bovine (b)PTH-(1-84) or the fully effective shorter fragment human (h)PTH-(1-34), fragments lacking the N-terminal region of the hormone did not increase cyclic AMP formation, whereas they did stimulate increases in both DNA synthesis and CK activity. Moreover, the PTH fragment hPTH-(28-48) at 10 microM inhibited the increase in cyclic AMP caused by 10 nM-bPTH-(1-84). The increase of CK activity in ROS 17/2.8 cells caused by bPTH-(1-84) or hPTH-(28-48) was completely inhibited by either cycloheximide or actinomycin D, as was shown previously for rat calvaria cell cultures. These results indicated the presence of a functional domain of PTH in the central part of the molecule which exerts its mitogenic-related effects on osteoblast- and chondroblast-like cells in a cyclic AMP-independent manner. Since cyclic AMP formation by PTH leads to bone resorption, specific mid-region fragments of PTH might prove suitable for use in vivo to induce bone formation without concomitant resorption.  相似文献   

15.
A brief historical perspective reviews studies that tested the hypotheses that PTH induces an anabolic effect in bone, and that the gain in trabecular bone was not at the expense of cortical bone. As PTH reduces the risk of fracture in humans with osteoporosis, the myths that postulated cortical bone porosity and increased bone turnover might increase fracture risk, are examined in the light of data from animals with osteonal bone. These show that PTH "braces" the bone by immediately stimulating bone formation at modeling and remodeling sites. Increased porosity is a late event, occurring close to the neutral axis of bone where detrimental effects on biomechanical strength are unlikely. PTH increases bone mass by stimulating modeling in favor of bone formation, and restructures bone geometry via more extensive remodeling. Cell and genetic events induced in bone by PTH have been studied in rats and are time- and regimen-dependent. In addition to the stimulation of gene expression for matrix proteins, early genes upregulated by once daily PTH are those associated with matrix degradation and induction of osteoclastic resorption, indicative of possible mechanisms by which PTH may increase bone turnover. Boneforming surfaces are increased due to increased numbers of newly differentiated osteoblasts and retention of older osteoblasts by inhibition of apoptosis. After stopping treatment, the number of osteoblasts is quickly reduced and bone turnover returns to that of controls, slowing both bone formation and resorption. The increased proportion of bone undergoing PTH-induced remodeling requires maturation and completion of mineralization. These responses may explain the delay in reversal of gains in bone mass and biomechanical properties for at least two turnover cycles following withdrawal in large animal models. Thus, the skeletal benefits of PTH extend beyond the active treatment phase.  相似文献   

16.
Osteoporosis and diseases of bone loss are a major public health problem for the present and the future since longevity and prevalence of the disease are increasing in all parts of the world. The bisphosphonates, widely used in the treatment of osteoporosis, act by inhibiting bone resorption. However, there are few agents that promote or increase bone formation in patients who have suffered substantial bone loss. To facilitate the identification of novel anabolic therapies, the authors have developed a rapid, high-throughput in vivo screen using larval zebrafish (Danio rerio) in which they are able to identify agents with anabolic effects in the skeleton within a 6-day time period. Vitamin D3 analogs and intermittent parathyroid hormone (PTH) result in dose-dependent increases in the formation of mineralized bone, whereas continuous exposure to PTH results in net bone loss. Because this model is fast, economical, and genetically tractable, it provides a powerful adjunct to mammalian models for the identification of new anabolic bone agents and offers the potential for genetic elucidation of pathways important in osteoblastic activity.  相似文献   

17.
Previously, we and others have presented evidence that a calcium second messenger system is involved in the action of parathyroid hormone (PTH) on bone. In the present report, the effects of PTH(1-34) and PTH(3-34)amide treatment on diacylglycerol (DG) in neonatal mouse calvaria are described. PTH(1-34) produced a rapid (within 5 minutes) increase in calvarial incorporation of 3H-arachidonic acid into DG. The effect was maximal at 0.1 nMPTH(1-34), the lowest concentration tested. The 3-34 amide analogue of PTH increased DG to the same extent as PTH(1-34). The effect was maximal at 10 nM PTH(3-34)amide, the lowest concentration tested. These concentrations were lower than those required to elicit maximal effects on bone resorption. In contrast to effects on cyclic AMP, where the 3-34 amide inhibited the increase elicited by PTH, combined treatment of calvaria with PTH(1-34) and PTH(3-34)amide did not inhibit effects on resorption or diacylglycerol.  相似文献   

18.
It has been suggested that intracellular Ca2+, in addition to cAMP, plays an important role in PTH-stimulated bone resorption. There is now strong evidence indicating that the osteoblast is the main target cell for PTH action, regulating indirectly, via cell-cell communication, osteoclastic bone resorption. In order to investigate the possible role of free cytosolic calcium in stimulated bone resorption, we studied the effects of the intact hormone (bPTH 1-84) and some of its fragments (bPTH (1-34), bPTH(3-34,) (Nle-8, Nle-18,Tyr-34) bPTH (3-34) amide) on their capacity to modify the cytosolic Ca2+ concentration in rat osteoblast-like cells. The experiments were performed using Quin-2, a fluorescent indicator of free calcium. We found an excellent correlation between the ability of PTH and PTH fragments to transiently increase cytosolic Ca2+ concentration in rat osteoblast-like cells and their ability to stimulate bone resorption in embryonic rat calvaria in vitro. On the other hand, no direct correlation was found for the cAMP and bone-resorbing responses. On the ground of these data we propose a two-receptor model for PTH action in osteoblasts, in which one receptor is coupled to the production of cAMP, whereas the other is involved in the increase of cytosolic Ca2+. Activation of both receptors by PTH (1-84) or PTH (1-34) leads to the full physiological response in osteoblasts, most probably the release of one or more factors which stimulate the activity of existing osteoclasts and others which stimulate the recruitment of additional osteoclasts.  相似文献   

19.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

20.
Osteoporosis is a systemic skeletal disease associated with reduced bone strong point that results in raised fracture risk, with decreased bone strength, leading to reduced bone mineral density and poor bone quality. It is the most common in older females but some men are also at high risk. Although considered as a predictable result of aging, it is can be avoidable and treatable. The existing treatment of osteoporosis mainly contains antiresorptive and anabolic agents. In spite of these improvements, concerns around unusual side-effects of antiresorptive drugs, and the lack of perfect confirmation in maintenance of their long-standing effectiveness is bring about many patients not receiving these drugs. Over the years, the stem cell-based therapy has attained substantial clinical consideration because of its potential to treat numerous diseases. The stem cell therapy has been recommended as a probable therapeutic approach for patients with osteoporosis. Even though the concept of stem cell-based therapy for osteoporosis has caught substantial attention, no clinical trial has been published on humans. The cell studies based on osteoporosis are primarily focused on osteoclastic activity and bone resorption procedures. Earlier, it was on osteoblastogenesis and in recent times, on the differentiation probable of mesenchymal stem cells. In this review, we have summarized the therapeutic role of stem cell-based strategy in osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号