首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately half of the cases of hydroxysteroid (17β) dehydrogenase X (HSD10) deficiency are due to a missense C>T mutation in exon 4 of the HSD17B10 gene. The resulting HSD10 (p.R130C) loses most or all catalytic functions, and the males with this mutation have a much more severe clinical phenotype than those carrying p.V65A, p.L122V, or p.E249Q mutations. We found that the mutated cytosine which is + 2259 nucleotide from the ATG of the gene, is > 90% methylated in both the active and inactive X chromosomes in two normal females as well as in the X chromosome of a normal male. Since 5-methylcytosine is prone to conversion to thymine by deamination, the methylation of this cytosine in normal X chromosomes provides an explanation for the prevalence of the p.R130C mutation among patients with HSD10 deficiency. The substitution of arginine for cysteine eliminates several hydrogen bonds and reduces the van der Waals interaction between HSD10 subunits. The resulting disruption of protein structure impairs some if not all of the catalytic and non-enzymatic functions of HSD10. A meta-analysis of residual HSD10 activity in eight patients with the p.R130C mutation showed an average 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) activity of only 6 (± 5) % of the normal control level. This is significantly lower than in cells of patients with other, clinically milder mutations and suggests that the loss of HSD10/MHBD activity is a marker for the disorder.  相似文献   

2.
B Chakrabarti  S Kumar  R Singh  N Dimitrova 《Gene》2012,499(2):250-255
The clinical, biochemical and genetic features of a Cypriot origin male of non-consanguineous parents due to 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD-3) deficiency are presented. The patient, currently a 10 old male, was referred to our clinic because of ambiguous genitalia at birth. Gonads were palpable in the inguinal canal bilaterally and no Müllerian structures identified on pelvic ultrasound. Chromosomal analysis showed an apparently normal male 46,XY karyotype. Diagnosis of 17β-HSD-3 deficiency in the newborn was suspected based on biochemical findings, following human chorionic gonadotrophin (hCG) stimulation test. Sequence analysis and real time PCR along with MLPA identified the patient with a novel 11.96 kb duplication that spans exons 3-10 of the HSD17B3 gene and extends from intron 2 to intron 10 in compound heterozygosity with the known p.R80Q missense mutation leading to 17β-HSD-3. In conclusion, 17β-HSD-3 deficiency was diagnosed in this patient based on endocrinologic evaluation and confirmed with genetic analysis of the HSD17B3 gene. The novel large duplication spanning exons 3-10 of the HSD17B3 gene that we report here in compound heterozygosity with the known p.R80Q leads to 17β-HSD-3 deficiency presenting as 46,XY Disorder of Sex Development. Following diagnosis and appropriate genetic counselling, the patient was raised a boy and successfully underwent surgical correction of crytptorchidism and hypospadias.  相似文献   

3.
4.
The protein encoded by the HSD17B7 gene was originally described as a prolactin receptor-associated protein and as 17beta-hydroxysteroid dehydrogenase (HSD) type 7. Its ability to synthesize 17beta-estradiol in vitro has been reported previously. However, we demonstrate that HSD17B7 is the ortholog of the yeast 3-ketosteroid reductase Erg27p and converts zymosterone to zymosterol in vitro, using reduced nicotinamide adenine dinucleotide phosphate as cofactor. Expression of human and murine HSD17B7 in an Erg27p-deficient yeast strain complements the 3-ketosteroid reductase deficiency of the cells and restores growth on sterol-deficient medium. A fusion of HSD17B7 with green fluorescent protein is located in the endoplasmic reticulum, the site of postsqualene cholesterogenesis. Further critical evidence for a role of HSD17B7 in cholesterol metabolism is provided by the observation that its murine ortholog is a member of the same highly distinct embryonic synexpression group as hydroxymethyl-glutaryl-coenzyme A reductase, the rate-limiting enzyme of sterol biogenesis, and is specifically expressed in tissues that are involved in the pathogenesis of congenital cholesterol-deficiency disorders. We conclude that HSD17B7 participates in postsqualene cholesterol biosynthesis, thus completing the molecular cloning of all genes of this central metabolic pathway. In its function as the 3-ketosteroid reductase of cholesterol biosynthesis, HSD17B7 is a novel candidate for inborn errors of cholesterol metabolism.  相似文献   

5.
6.
The HSD17B4 gene codes for a 80 kDa multifunctional enzyme containing three distinct functional domains and is localized in peroxisomes. The N-terminal part exhibits 3-hydroxyacyl-CoA dehydrogenase and 17beta-hydroxysteroid dehydrogenase activity whereas the central part shows enoyl-CoA hydratase activity. The carboxy-terminal part of the protein has sterol-carrier-protein activity. The protein is widely expressed, however in several tissues like brain, uterus and lung its expression is limited to specific cells like Purkinje cells or luminal epithelium. The HSD17B4 gene consist of 24 exons and 23 introns with classical intron-exon junctions spanning more than 100 kbp. The importance of the HSD17B4 protein is stressed by the identification of patients with severe clinical abnormalities due to mutations in the HSD17B4 gene. We have now checked the consequences of one frequent mutation, G16 S, which results in inactivation of the enzyme due to loss of interaction with NAD+.  相似文献   

7.
8.
X. He    S. Yang 《Journal of fish biology》2009,74(8):1689-1692
The reported data on the developmental expression of Hsd17b10 gene in Danio rerio is crucial to the utilization of the D. rerio embryo as an animal model for human developmental disorders caused either by mutations on HSD17B10 (formerly HADH2 ) or by defective expression of the gene. Related diseases were summarized, and it was noticed that hyperinsulinaemic hypoglycaemia is not linked to HSD17B10 . This inherited disease is actually caused by a deletion in the HADH gene on chromosome 4. Moreover, it was found by a revision of the reported phylogenetic tree that hydroxyacyl-CoA dehydrogenase II or rather hydroxysteroid (17beta) dehydrogenase 10 (HSD10) of amphioxus Branchiostoma belcheri —occupies a transition position from HSD10 orthologs of invertebrates to those of vertebrates.  相似文献   

9.
Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.  相似文献   

10.
Mutations of 3 beta hydroxysteroid dehydrogenase type II (HSD3B2) gene result in different clinical consequences. We explain a patient who demonstrated a salt wasting form of 3βHSD deficiency in infancy. Signs of hyponatremia and hyperkalemia were recognized in the infant with ambiguous genitalia and perineal hypospadias. The 46,XY male was genotyped by direct sequencing of HSD3B2 gene. Steroid profiles showed elevated concentration of 17 hydroxyprogesterone, and decrease in concentration of cortisol, and testosterone. Dehydroepiandrotone (DHEA) to androstenedione ratio had 6 fold increases. Direct sequencing of the patient revealed homozygous missense A82P mutation in exon 3. This mutation was confirmed by segregation analysis of the parents. Bioinformatic tools were used for in silico structural and functional analyses. Also, the pathological effect of the mutation was validated by different software. Alanine is a conserved amino acid in the membrane binding domain of the enzyme and proline substitution was predicted to destabilize the protein. This report may highlight the importance of the screening programs of the disorder in Iran.  相似文献   

11.
Niemann–Pick disease (NPD) is a lysosomal storage disorder that results from the deficiency of a lysosomal enzyme, acid sphingomyelinase. Niemann–Pick disease type A and B is caused by mutations in the sphingomyelin phosphodiesterase gene (SMPD1) coding for ASM. The aim of this study was to evaluate the spectrum of SMPD1 gene mutations in Turkish NPD patients and to study genotype–phenotype associations. We present a molecular analysis of 10 Turkish NPD type A/B patients. Four of the patients had type A and six had type B NPD. All mutant SMPD1 alleles were identified, including 5 different mutations, 1 of which was novel. These mutations included three missense mutations: c.409T>C (p.L137P), c.1262 A>G (p.H421R) and c.1552T>C (p.L549P), a common frameshift mutation in codon 189, identified in three patients, is caused by the deletion of the 567T, introducing a stop codon 65 amino acids downstream (p.P189fsX65), and a novel frameshift mutation c.1755delC (p.P585PfsX24) which was not reported previously.  相似文献   

12.
13.
14.
15.
We studied (1) the effects of oral contraceptive pills (OCPs) on hirsutism, hormonal and metabolic variables in 49 polycystic ovary syndrome patients without metabolic comorbidities and (2) the effect of 17-hydroxysteroid dehydrogenase type 5 gene polymorphism (-71A/G HSD17B5 SNP) on the response to OCP treatment. Mean age was 21.9 ± 6.5 years. Patients received monophasic OCP (20 μg ethinyl estradiol plus 75 μg gestodene), 21/28 days per cycle, during 6 months; 32 patients with severe hirsutism also received spironolactone 100 mg. The frequencies of HSD17B5 genotypes were: AA?=?0.49 (55.1%), AG?=?0.42 (30.6%) and GG?=?0.09 (14.3%). After 6 months, body mass index and waist circumference remained unchanged regardless of the presence of allele G. A slight reduction (p?相似文献   

16.
17.
Our laboratory has previously cloned and purified a protein named PRAP (prolactin receptor-associated protein) that was shown to be a novel 17beta-hydroxysteroid dehydrogenase (HSD) enzyme with dual activity. This enzyme, renamed HSD17B7 or PRAP/17beta-HSD7, converts estrone to estradiol and is also involved in cholesterol biosynthesis. The major site of its expression is the corpus luteum of a great number of species including rodents and humans. To examine the functional significance of HSD17B7 in pregnancy, we generated a knockout mouse model with targeted deletions of exons 1-4 of this gene. We anticipated a mouse with a severe fertility defect due to its inability to regulate estrogen levels during pregnancy. The heterozygous mutant mice are normal in their development and gross anatomy. The females cycle normally, and both male and female are fertile with normal litter size. To our surprise, the breeding of heterozygous mice yielded no viable HSD17B7 null mice. However, we found HSD17B7 null embryo alive in utero on d 8.5 and d 9.5. By d 10.5, the fetuses grow and suffer from severe brain malformation and heart defect. Because the brain depends on in situ cholesterol biosynthesis for its development beginning at d 10, the major cause of fetal death appears to be due to the cholesterol synthetic activity of this enzyme. By ablating HSD17B7 function, we have uncovered, in vivo, an important requirement for this enzyme during fetal development.  相似文献   

18.
19.
In order to further understand the role of fibrillin-1 (FBN1, OMIM 134797) perturbations in the pathogenesis of Marfan syndrome (MFS, OMIM 154700) we studied a Han Chinese family in which MFS was segregating. In the Chinese family with 5 affected members, mutation screening for FBN1 was performed using direct sequencing. A novel non-synonymous mutation in the transforming growth factor beta binding protein-like (TB) domain of the FBN1 gene was found. The missense mutation c.3022T>C (C1008R) located in exon 24. This mutation was present in the proband and in two other affected family members, but in neither unaffected family members nor unrelated control subjects. The novel non-synonymous mutation, c.3022T>C (C1008R) in the TB domain of FBN1 gene, may be involved in the pathogenesis of MFS in a Han Chinese family.  相似文献   

20.
《Endocrine practice》2014,20(9):e151-e156
ObjectiveTo present a case of apparent mineralocorticoid excess (AME) due to a novel mutation in the HSD11B2 gene and describe the patient’s response to therapy.MethodsThe clinical, biochemical, and genetic features of the proband and his family are presented. For the genetic study, DNA was extracted from peripheral leucocytes. The exons and exon-intron boundaries were polymerase chain reaction (PCR)-amplified and directly sequenced.ResultsA 10-year-old male presented with hypertension (HTN) and weakness and was found to have hypokalemia of 2.6 mmol/L. Plasma renin was undetectable, and plasma and urinary aldosterone were low. Serum cortisol and deoxycorticosterone were normal. Daily urinary excretion of cortisol was normal, but urinary and serum cortisone levels were undetectable. The patient was treated with spiranolactone with inadequate response. A small dose of dexamethasone was added and led to excellent control of HTN and hypokalemia. Genetic studies showed a novel missense biallelic mutation changing guanine to adenine in exon 3 (c.G526A) of the HSD11B2. This mutation changes the amino acid aspartic acid to asparagine at codon 176 (p.D176N). A monoallelic form of the same mutation was found in the parents and 3 of his 4 healthy siblings but not in a healthy sister or 100 normal subjects.ConclusionsA case of AME due to a novel mutation in HSD11B2 showed the usual features of AME but exhibited an inadequate response to spironolactone. A small dose of dexamethasone resulted in an excellent response. (Endocr Pract. 2014;20:e151-e156)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号