首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

2.
罗强  高超  王怀立  周建华  高铁铮 《遗传》2005,27(4):544-548
X-连锁迟发性脊椎骨骺发育不良(spondyloepiphyseal dysplasia tarda, SEDL)是一种少见的由SEDL基因突变引起的骨软骨发育障碍性疾病,病变主要累及腰椎和近端承重大关节。为研究SEDL基因剪接受体突变(IVS2 -2A→C)对mRNA加工的影响,从该突变所致SEDL患者,以及健康对照者外周血中提取总RNA,逆转录合成cDNA, 以此为模板进行聚合酶链式反应(polymerase chain reaction, PCR),对PCR扩增产物采用双向直接测序和非变性聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis, PAGE)方法进行分析。测序结果发现IVS2-2A→C突变患者的一种cDNA外显子2与外显子4直接拼接,显示外显子3全部丢失;另一种cDNA外显子1与外显子4拼接,显示外显子2和外显子3均缺失;在健康对照者也发现了外显子2缺失的cDNA。PAGE发现患者和对照者都存在两种RT-PCR产物,长度分别为567bp、425bp以及679bp、537bp,证实了测序结果。这说明SEDL基因第二内含子剪接受体突变(IVS2-2A→C)导致其外显子3在mRNA加工过程中全部丢失,由于SEDL基因的翻译起始位点位于外显子3,它的缺失可能使生成的mRNA不能被翻译,从而引起SEDL发生;外显子2位于5′ UTR,它的缺失提示SEDL基因存在选择性剪接,正常人也存在缺失外显子2的cDNA,说明这种选择性剪接对临床表型的影响似乎并不大,它对基因表达水平和表达调控是否有影响还需要进一步研究。  相似文献   

3.
EDA is a facultative type III homology of human fibronectin encoded by an alternative spliced exon. The EDA+ and EDA- mRNA forms show a cell type specific distribution with their relative proportion varying during development, aging and oncogenic transformation. We have previously demonstrated that an 81 bp nucleotide sequence within the exon itself is essential for differential RNA processing. Fine mapping of cis acting elements within this region has been carried out to identify possible target sites for the modulation of alternative splicing. There are at least two short nucleotide sequences involved. Element A (GAAGAAGA) is a positive modulator for the recognition of the exon, its deletion results in constitutive exclusion of the EDA exon. Element B (CAAGG) is a negative modulator for exon recognition, its deletion results in constitutive inclusion of the EDA exon. This bipartite structure of the splicing enhancer is a novel feature of the mammalian exons.  相似文献   

4.
The human calcitonin/CGRP-I (CALC-I) gene can be alternatively expressed into calcitonin mRNA in thyroid C-cells and into CGRP-I mRNA in particular nerve cells. Formation of calcitonin mRNA requires splicing of exons 1, 2, 3 and 4 and addition of poly(A) at exon 4, whereas splicing of exons 1, 2, 3, 5 and 6 and addition of poly(A) at exon 6 yields CGRP-I mRNA. The calcitonin and CGRP-I mRNA-specific splicing reactions were investigated in vitro, in nuclear extracts of HeLa cells, using model precursor RNAs containing the exon 3 to exon 5 region of the gene. A precursor RNA containing the full-length exon 3 to exon 5 region was only poorly spliced in vitro. Therefore, a systematic analysis was performed of the effect of deletions introduced in the intron 3, exon 4 and intron 4 of this precursor RNA on calcitonin/CGRP mRNA-specific splicing. The deletions increased the efficiency of splicing considerably. In all cases CGRP mRNA-specific splicing is strongly favoured over calcitonin mRNA-specific splicing. In addition, splicing reactions using cryptic 5' splice sites were detected which interfered with the usage of processing signals for calcitonin and CGRP mRNA-specific splicing. The results imply a major regulatory role for the exon 4 poly(A) addition reaction in the generation of calcitonin mRNA.  相似文献   

5.
Human papillomavirus 16 (HPV16) E6E7 pre-mRNA is bicistronic and has an intron in the E6 coding region with one 5' splice site and two alternative 3' splice sites, which produce E6(*)I and E6(*)II, respectively. If this intron remains unspliced, the resulting E6E7 mRNA expresses oncogenic E6. We found for the first time that the E6E7 pre-mRNA was efficiently spliced in vitro only when capped and that cellular cap-binding factors were involved in the splicing. The cap-dependent splicing of the E6E7 pre-mRNA was extremely efficient in cervical cancer-derived cells, producing mostly E6(*)I, but inefficient in cells transfected with a common retrovirus expression vector, pLXSN16E6E7, due to the large size of this vector's exon 1. Further studies showed that efficient splicing of the E6E7 pre-mRNA depends on the distance of the cap-proximal intron from the RNA 5' cap, with an optimal distance of less than 307nt in order to facilitate better association of U1 small nuclear RNA with the intron 5' splice site. The same was true for splicing of human beta-globin RNA. Splicing of the E6E7 RNA provided more E7 RNA templates and promoted E7 translation, whereas a lack of RNA splicing produced a low level of E7 translation. Together, our data indicate that the distance between the RNA 5' cap and cap-proximal intron is rate limiting for RNA splicing. HPV16 E6E7 pre-mRNA takes advantage of its small cap-proximal exon to confer efficient splicing for better E7 expression.  相似文献   

6.
Yeast mRNA splicing in vitro   总被引:89,自引:0,他引:89  
Synthetic actin and CYH2 pre-mRNAs containing a single intron are accurately spliced in a soluble whole cell extract of yeast. Splicing in vitro requires ATP. The excised intron is released as a lariat in which an RNA branch connects the 5' end of the molecule to the last A in the "intron conserved sequence" UACUAAC. Two other discrete RNA species produced during splicing in vitro may represent reaction intermediates: free, linear exon 1 and a form of the intron lariat extending beyond the 3' splice site to include exon 2. Both lariat forms correspond to molecules previously shown to be produced during yeast pre-mRNA splicing in vivo.  相似文献   

7.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

8.
9.
10.
11.
12.
D L Black 《Cell》1992,69(5):795-807
A conserved positive-acting RNA sequence was found to be required for the neuron-specific splicing of the mouse c-src N1 exon. The sequence lies in the intron between exons N1 and 4, close to the N1 donor site. Normally, only the neural-specific splicing of exon N1 required this sequence. When the intron downstream of N1 was shortened, splicing at the constitutive exon 4 acceptor also became dependent on the activating sequence. The neuronal and nonneuronal patterns of src splicing were reconstituted in vitro. HeLa cell extracts spliced exon 4 to exon 3, skipping exon N1. Weri-1 retinoblastoma cell extracts spliced exon 4 to exon N1 as well as to exon 3. Both patterns of splicing were dependent on the activating sequence. A 123 nt RNA containing just the activating sequence specifically inhibited both patterns of src splicing, indicating that factors bound to the activator were required for its effects.  相似文献   

13.
14.
15.
16.
17.
Glycogen storage disease (GSD) type 1a (von Gierke disease) is an autosomal recessive disorder caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). We have identified a novel mutation in the G6Pase gene of a individual with GSD type 1a. The cDNA from the patient's liver revealed a 91-nt deletion in exon 5. The genomic DNA from the patient's white blood cells revealed no deletion or mutation at the splicing junction of intron 4 and exon 5. The 3' splicing occurred 91 bp from the 5' site of exon 5 (at position 732 in the coding region), causing a substitution of a single nucleotide (G to T) at position 727 in the coding region. Further confirmation of the missplicing was obtained by transient expression of allelic minigene constructs into animal cells. Another eight unrelated families of nine Japanese patients were all found to have this mutation. This mutation is a new type of splicing mutation in the G6Pase gene, and 91% of patients and carriers suffering from GSD1a in Japan are detectable with this splicing mutation.  相似文献   

18.
19.
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5′ proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3′ hepatic control region, derived from a region ∼18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3′ splice acceptor sites causing deletion of cloned 5′ untranslated mRNA sequences and, in some cases, deletion of the 5′ end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3′ splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1–exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.  相似文献   

20.
Effect of 5'' splice site mutations on splicing of the preceding intron.   总被引:48,自引:21,他引:27       下载免费PDF全文
Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号