首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Preparation of specific lineages at high purities from embryonic stem (ES) cells requires both selective culture conditions and markers to guide and monitor the differentiation. In this study, we distinguished definitive and visceral endoderm by using a mouse ES cell line that bears the gfp and human IL2R alpha (also known as CD25) marker genes in the goosecoid (Gsc) and Sox17 loci, respectively. This cell line allowed us to monitor the generation of Gsc+ Sox17+ definitive endoderm and Gsc- Sox17+ visceral endoderm and to define culture conditions that differentially induce definitive and visceral endoderm. By comparing the gene expression profiles of definitive and visceral endoderm, we identified seven surface molecules that are expressed differentially in the two populations. One of the seven markers, Cxcr4, to which a monoclonal antibody is available allowed us to monitor and purify the Gsc+ population from genetically unmanipulated ES cells under the condition that selects definitive endoderm.  相似文献   

6.
7.
The definitive endoderm forms during gastrulation and is rapidly transformed into the gut tube which is divided along the anterior-posterior axis into the foregut, midgut, and hindgut. Lineage tracing and genetic analysis have examined the origin of the definitive endoderm during gastrulation and demonstrated that the majority of definitive endoderm arises at the anterior end of the primitive streak (APS). Foxh1 and Foxa2 have been shown to play a role in specification of the APS and definitive endoderm. However, prior studies have focused on the role of these factors in specification of foregut definitive endoderm, while their role in the specification of midgut and hindgut definitive endoderm is less understood. Furthermore, previous analyses of these mutants have utilized definitive endoderm markers that are restricted to the anterior endoderm, expressed in extraembryonic endoderm, or present in other germ layers. Here, we characterized the expression of several novel definitive and visceral endoderm markers in Foxh1 and Foxa2 null embryos. In accordance with previous studies, we observed a deficiency of foregut definitive endoderm resulting in incorporation of visceral endoderm into the foregut. Interestingly, this analysis revealed that formation of midgut and hindgut definitive endoderm is unaffected by loss of Foxh1 or Foxa2. This finding represents a significant insight into specification and regionalization of mouse definitive endoderm.  相似文献   

8.
9.
10.
Histone acetylation of Murine Erythroleukemia Cells (MELC) has been re-examined. It is demonstrated that sodium butyrate causes hyperacetylation of core histones in inducible as well as non-inducible MELC strains. This indicates that histone hyperacetylation per se is not sufficient to activate genes. However, [3H]acetate incorporation into core histones of the inducible MELC line F4N increases after induction of differentiation with dimethylsulfoxide (DMSO), in contrast to the non-inducible variant F4+. Thus histone acetylation may play a role as an auxiliary mechanism for gene activation (and inactivation). In addition, the appearance of a histone H3 variant during differentiation of MELC is reported.  相似文献   

11.
12.
13.
Histone acetylation is an important epigenetic modification implicated in the regulation of chromatin structure and, subsequently, gene expression. Global histone deacetylation was reported in mouse oocytes during meiosis but not mitosis. The regulation of this meiosis-specific deacetylation has not been elucidated. Here, we demonstrate that p34(cdc2) kinase activity and protein synthesis are responsible for the activation of histone deacetylases and the inhibition of histone acetyltransferases (HATs), respectively, resulting in deacetylation of histone H4 at lysine-12 (H4K12) during mouse oocyte meiosis. Temporal changes in the acetylation state of H4K12 were examined immunocytochemically during meiotic maturation using an antibody specific for acetylated H4K12. H4K12 was deacetylated during the first meiosis, temporarily acetylated around the time of the first polar body (PB1) extrusion, and then deacetylated again during the second meiosis. Because these changes coincided with the known oscillation pattern of p34(cdc2) kinase activity, we investigated the involvement of the kinase in H4K12 deacetylation. Roscovitine, an inhibitor of cyclin-dependent kinase activity, prevented H4K12 deacetylation during both the first and second meiosis, suggesting that p34(cdc2) kinase activity is required for deacetylation during meiosis. In addition, cycloheximide, a protein synthesis inhibitor, also prevented deacetylation. After PB1 extrusion, at which time H4K12 had been deacetylated, H4K12 was re-acetylated in the condensed chromosomes by treatment with cycloheximide but not with roscovitine. These results demonstrate that HATs are present but inactivated by newly synthesized protein(s) that is (are) not involved in p34(cdc2) kinase activity. Our results suggest that p34(cdc2) kinase activity induces the deacetylation of H4K12 and that the deacetylated state is maintained by newly synthesized protein(s) that inhibits HAT activity during meiosis.  相似文献   

14.
Changes in histone acetylation during postovulatory aging of mouse oocyte   总被引:2,自引:0,他引:2  
Because some animals and human beings potentially engage in sexual activity at any day of the menstrual cycle, this may cause fertilization of postovulatory aged oocytes, which result in decreased potential of embryo development and longevity of offspring. To investigate the involvement of histone acetylation in the function of postovulatory aging, we examined the changes of histone acetylation by immunostaining with specific antibodies against various acetylated lysines on histones H3 and H4. We found that the acetylation levels of lysine 14 on histone H3 and lysines 8 and 12 on histone H4 in mouse oocytes were gradually increased during in vivo and in vitro postovulatory aging. Furthermore, the acetylation levels on these sites were markedly decreased or increased when the process of postovulatory aging was artificially delayed or accelerated, respectively. These results indicated that the gradual acetylation on some lysines of histones H3 and H4 is one of the phenomena in the process of postovulatory aging. Moreover, raising the level of histone acetylation by trichostatin A can accelerate the progression of postovulatory aging, suggesting that alteration of the acetylation on histones H3 and H4 can affect the progression of postovulatory aging in mouse oocytes.  相似文献   

15.
Embryonic stem (ES) cells can be induced to differentiate into embryoid bodies (EBs) in a synchronised manner when plated at a fixed density in hanging drops. This differentiation procedure mimics post-implantation development in mouse embryos and also serves as the starting point of protocols used in differentiation of stem cells into various lineages. Currently, little is known about the potential influence of microRNAs (miRNAs) on mRNA expression patterns during EB formation. We have measured mRNA and miRNA expression in developing EBs plated in hanging drops until day 3, when discrete structural changes occur involving their differentiation into three germ layers. We observe significant alterations in mRNA and miRNA expression profiles during this early developmental time frame, in particular of genes involved in germ layer formation, stem cell pluripotency and nervous system development. Computational target prediction using Pictar, TargetScan and miRBase Targets reveals an enrichment of binding sites corresponding to differentially and highly expressed miRNAs in stem cell pluripotency genes and a neuroectodermal marker, Nes. We also find that members of let-7 family are significantly down-regulated at day 3 and the corresponding up-regulated genes are enriched in let-7 seed sequences. These results depict how miRNA expression changes may affect the expression of mRNAs involved in EB formation on a genome-wide scale. Understanding the regulatory effects of miRNAs during EB formation may enable more efficient derivation of different cell types in culture.  相似文献   

16.
17.
Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmia-esophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the trachea and esophagus fail to separate. Mouse embryos heterozygous for the null allele, Sox2(EGFP), appear normal. However, further reductions in Sox2, using Sox2(LP) and Sox2(COND) hypomorphic alleles, result in multiple abnormalities. Approximately 60% of Sox2(EGFP/COND) embryos have EA with distal TEF in which Sox2 is undetectable by immunohistochemistry or western blot. The mutant esophagus morphologically resembles the trachea, with ectopic expression of Nkx2.1, a columnar, ciliated epithelium, and very few p63(+) basal cells. By contrast, the abnormal foregut of Nkx2.1-null embryos expresses elevated Sox2 and p63, suggesting reciprocal regulation of Sox2 and Nkx2.1 during early dorsal/ventral foregut patterning. Organ culture experiments further suggest that FGF signaling from the ventral mesenchyme regulates Sox2 expression in the endoderm. In the 40% Sox2(EGFP/COND) embryos in which Sox2 levels are approximately 18% of wild type there is no TEF. However, the esophagus is still abnormal, with luminal mucus-producing cells, fewer p63(+) cells, and ectopic expression of genes normally expressed in glandular stomach and intestine. In all hypomorphic embryos the forestomach has an abnormal phenotype, with reduced keratinization, ectopic mucus cells and columnar epithelium. These findings suggest that Sox2 plays a second role in establishing the boundary between the keratinized, squamous esophagus/forestomach and glandular hindstomach.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号