首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of immune correlates of protection for viral vaccines is complicated by multiple factors, but there is general consensus on the importance of antibodies that neutralize viral attachment to susceptible cells. Development of new viral vaccines has mostly followed this neutralizing antibody paradigm, but as a recent clinical trial of human cytomegalovirus (HCMV) vaccination demonstrated, this singular approach can yield limited protective efficacy. Since HCMV devotes >50% of its coding capacity to proteins that modulate host immunity, it is hypothesized that expansion of vaccine targets to include this part of the viral proteome will disrupt viral natural history. HCMV and rhesus cytomegalovirus (RhCMV) each encode an ortholog to the cellular interleukin-10 (cIL-10) cytokine: cmvIL-10 and rhcmvIL10, respectively. Despite extensive sequence divergence from their host''s cIL-10, each viral IL-10 retains nearly identical functionality to cIL-10. Uninfected rhesus macaques were immunized with engineered, nonfunctional rhcmvIL-10 variants, which were constructed by site-directed mutagenesis to abolish binding to the cIL-10 receptor. Vaccinees developed antibodies that neutralized rhcmvIL-10 function with no cross-neutralization of cIL-10. Following subcutaneous RhCMV challenge, the vaccinees exhibited both reduced RhCMV replication locally at the inoculation site and systemically and significantly reduced RhCMV shedding in bodily fluids compared to controls. Attenuation of RhCMV infection by rhcmvIL-10 vaccination argues that neutralization of viral immunomodulation may be a new vaccine paradigm for HCMV by expanding potential vaccine targets.  相似文献   

2.

Background

Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114.

Methodology/Principal Findings

In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by co-immunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24–48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44.

Conclusions/Significance

The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement in different DNA transactions.  相似文献   

3.

Objectives

There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells.

Methods

Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively.

Results

Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures.

Conclusion

HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma.  相似文献   

4.

Background

Breast cancer is a leading cause of death among women worldwide. Increasing evidence implies that human cytomegalovirus (HCMV) infection is associated with several malignancies. We aimed to examine whether HCMV is present in breast cancer and sentinel lymph node (SLN) metastases.

Materials and Methods

Formalin-fixed paraffin-embedded tissue specimens from breast cancer and paired sentinel lymph node (SLN) samples were obtained from patients with (n = 35) and without SLN metastasis (n = 38). HCMV immediate early (IE) and late (LA) proteins were detected using a sensitive immunohistochemistry (IHC) technique and HCMV DNA by real-time PCR.

Results

HCMV IE and LA proteins were abundantly expressed in 100% of breast cancer specimens. In SLN specimens, 94% of samples with metastases (n = 34) were positive for HCMV IE and LA proteins, mostly confined to neoplastic cells while some inflammatory cells were HCMV positive in 60% of lymph nodes without metastases (n = 35). The presence of HCMV DNA was confirmed in 12/12 (100%) of breast cancer and 10/11 (91%) SLN specimens from the metastatic group, but was not detected in 5/5 HCMV-negative, SLN-negative specimens. There was no statistically significant association between HCMV infection grades and progesterone receptor, estrogen receptor alpha and Elston grade status.

Conclusions

The role of HCMV in the pathogenesis of breast cancer is unclear. As HCMV proteins were mainly confined to neoplastic cells in primary breast cancer and SLN samples, our observations raise the question whether HCMV contributes to the tumorigenesis of breast cancer and its metastases.  相似文献   

5.
6.

Objective

To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions.

Methods

Mature articular chondrocytes from dogs (n = 3) were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive) or pCOX-2.cIL-4 (cytokine-responsive) plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS®) to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc) IL-1β (100 ng/ml) plus rcTNFα (50 ng/ml) in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic) properties of cIL-4.

Results

cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable). Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and promoter-independent.

Conclusions

Regulated expression of therapeutic candidate gene(s) coupled with suitable scaffold(s) could potentially serve as a useful tissue-engineering tool to devise future treatment strategies for osteoarthritis.  相似文献   

7.
8.

Background

Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5′ mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein.

Methodology/Principal Findings

To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth.

Conclusions/Significance

While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.  相似文献   

9.
10.

Purpose

Recent studies have implicated the human cytomegalovirus (HCMV) as a possible pathogen for causing hypertension. We aimed to study the association between HCMV infection and hypertension in the United States National Health and Nutrition Examination Survey (NHANES).

Methods

We analyzed data on 2979 men and 3324 women in the NHANES 1999–2002. We included participants aged 16–49 years who had valid data on HCMV infection and hypertension.

Results

Of the participants, 54.7% had serologic evidence of HCMV infection and 17.5% had hypertension. There were ethnic differences in the prevalence of HCMV infection (P<0.001) and hypertension (P<0.001). The prevalence of both increased with age (P<0.001). Before adjustment, HCMV seropositivity was significantly associated with hypertension in women (OR = 1.63, 95% CI = 1.25–2.13, P = 0.001) but not in men. After adjustment for race/ethnicity, the association between HCMV seropositivity and hypertension in women remained significant (OR = 1.55, 95% CI = 1.20–2.02, P = 0.002). Further adjustment for body mass index, diabetes status and hypercholesterolemia attenuated the association (OR = 1.44, 95% CI = 1.10–1.90, P = 0.010). However, after adjusting for age, the association was no longer significant (OR = 1.24, 95% CI = 0.91–1.67, P = 0.162).

Conclusions

In this nationally representative population-based survey, HCMV seropositivity is associated with hypertension in women in the NHANES population. This association is largely explained by the association of hypertension with age and the increase in past exposure to HCMV with age.  相似文献   

11.

Background

Interleukin-10 is an important cytokine that regulates immune response. Previous studies have shown that human cytomegalovirus can trigger cell autophagy during the early stages of infection. To our knowledge, whether IL-10 inhibits HCMV-induced autophagy and virus replication has not been studied previously.

Objectives

We investigated whether IL-10 affects cell viability and autophagy under the conditions of starvation and HCMV infection by using the MRC5 cell line. We also explored the role of IL-10-mediated autophagy on HCMV replication.

Results

Our data showed that IL-10 inhibited the autophagic flux of the MRC5 cells irrespective of starvation or HCMV infection, and suppressed HCMV replication. The promotion of autophagy with either a pharmacological inducer (rapamycin), or a technique to over-express the BECN1 gene reversed the effect of IL-10 on virus replication. Furthermore, the PI3K/Akt signal pathway was activated when the cells were pretreated with IL-10.

Conclusions

Our results indicated that IL-10 can suppress HCMV replication by inhibiting autophagy in host cells during the early stages of infection.  相似文献   

12.

Background

Cytomegalovirus is highly prevalent virus and usually occurs in immunocompromised patients. The pathophysiology and treatment of inflammatory bowel disease often induce a state of immunosuppression. Because this, there are still doubts and controversies about the relationship between inflammatory bowel disease and cytomegalovirus.

Aim

Evaluate the frequency of cytomegalovirus in patients with inflammatory bowel disease and identify correlations.

Methods

Patients with inflammatory bowel disease underwent an interview, review of records and collection of blood and fecal samples. The search for cytomegalovirus was performed by IgG and IgM blood serology, by real-time PCR in the blood and by qualitative PCR in feces. Results were correlated with red blood cell levels, C-reactive protein levels, erythrocyte sedimentation rates and fecal calprotectin levels for each patient.

Results

Among the 400 eligible patients, 249 had Crohn''s disease, and 151 had ulcerative colitis. In the group of Crohn''s disease, 67 of the patients had moderate or severe disease, but 126 patients presented with active disease, based on the evaluation of the fecal calprotectin. In patients with ulcerative colitis, only 21 patients had moderate disease, but 76 patients presented with active disease, based on the evaluation of the fecal calprotectin. A large majority of patients had positive CMV IgG. Overall, 10 patients had positive CMV IgM, and 9 patients had a positive qualitative detection of CMV DNA by PCR in the feces. All 400 patients returned negative results after the quantitative detection of CMV DNA in blood by real-time PCR. Analyzing the 19 patients with active infections, we only found that such an association occurred with the use of combined therapy (anti-TNF-alpha + azathioprine)

Conclusion

The findings show that latent cytomegalovirus infections are frequent and active cytomegalovirus infection is rare. We did not find any association between an active infection of CMV and inflammatory bowel disease activity.  相似文献   

13.

Background

While several studies have examined the general inflammatory responses in relation to cytomegalovirus infection, the identification of the various inflammatory mediators as well as their relative importance is far from clear.

Patients and Methods

Solid organ recipients enrolled in an international multicenter trial of cytomegalovirus disease treatment (the VICTOR study) were analyzed (n = 289) (ClinicalTrials.gov NCT00431353). Plasma markers of inflammation and endothelial cell activation were assessed at baseline by enzyme immunoassays.

Results

The major findings were: (i) Plasma levels of the CXC-chemokine interferon-inducible protein-10 (P<0.001) and C-reactive protein (P = 0.046) were independently associated with the presence of cytomegalovirus DNAemia above lower level of quantification. (ii) High levels of CC-chemokine ligand 21 (P = 0.027) and pentraxin 3 (P = 0.033) were independently associated with tissue invasive cytomegalovirus disease as opposed to cytomegalovirus syndrome.

Conclusion

Our findings illustrate the complex interaction between cytomegalovirus and the immune system, involving a wide range of inflammatory mediators that could be associated to disease manifestations in cytomegalovirus related disease.  相似文献   

14.

Background

Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood.

Principal Findings

Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction.

Conclusions

We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.  相似文献   

15.

Background

Congenital cytomegalovirus (CMV) infection is the most common intrauterine infection in the United States disproportionately affecting minority races and those of lower socio-economic class. Despite its importance there is little information on the burden of congenital CMV-related mortality in the US. To measure congenital CMV-associated mortality in the US and assess possible racial/ethnic disparities, we reviewed national death certificate data for a 17-year period.

Methods

Congenital CMV-associated deaths from 1990 through 2006 were identified from multiple-cause-coded death records and were combined with US census data to calculate mortality rates.

Results

A total of 777 congenital CMV-associated deaths occurred over the 17-year study period resulting in 56,355 years of age-adjusted years of potential life lost. 71.7% (557) of congenital CMV-associated deaths occurred in infants (age less than 1 year). Age-adjusted mortality rates stratified by race/ethnicity revealed mortality disparities. Age-adjusted rate ratios were calculated for each racial/ethnic group using whites as the reference. Native Americans and African Americans were 2.34 (95% CI, 2.11–2.59) and 1.89 (95% CI, 1.70–2.11) times respectively, more likely to die from congenital CMV than whites. Asians and Hispanics were 0.54 (95% CI, 0.44–0.66) and 0.96 (95% CI, 0.83–1.10) times respectively, less likely to die from congenital CMV than whites.

Conclusions/Significance

Congenital CMV infection causes appreciable mortality in the US exacting a particular burden among African Americans and Native Americans. Enhanced surveillance and increased screening are necessary to better understand the epidemiology of congenital CMV infection in addition to acceleration of vaccine development efforts.  相似文献   

16.

Background

Jawed vertebrates generate their immune-receptor repertoire by a recombinatorial mechanism that has the potential to produce harmful autoreactive lymphocytes. In mammals, peripheral tolerance to self-antigens is enforced by Foxp3+ regulatory T cells. Recombinatorial mechanisms also operate in teleosts, but active immunoregulation is thought to be a late incorporation to the vertebrate lineage.

Methods/Principal Findings

Here we report the characterization of adaptive autoimmunity and Foxp3-based immunoregulation in the zebrafish. We found that zebrafish immunization with an homogenate of zebrafish central nervous system (zCNS) triggered CNS inflammation and specific antibodies. We cloned the zebrafish ortholog for mammalian Foxp3 (zFoxp3) which induced a regulatory phenotype on mouse T cells and controlled IL-17 production in zebrafish embryos.

Conclusions/Significance

Our findings demonstrate the acquisition of active mechanisms of self-tolerance early in vertebrate evolution, suggesting that active regulatory mechanisms accompany the development of the molecular potential for adaptive autoimmunity. Moreover, they identify the zebrafish as a tool to study the molecular pathways controlling adaptive immunity.  相似文献   

17.

Background  

Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells.  相似文献   

18.

Background

The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs.

Methodology/Principal Findings

We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts.

Conclusions

Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs.  相似文献   

19.
20.

Background

6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases.

Methodology/Principal Findings

Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome.

Conclusion/Significance

6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号