首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrasting agents (CAs) that are administered to patients during magnetic resonance imaging to facilitate tumor identification are generally considered harmless. However, gadolinium (Gd) based contrast agents can be retained in the body, inflicting specific cell line cytotoxicity. We investigate the effect of Gadopentatic acid (Gd-DTPA) on human breast adenocarcinoma MCF-7 cells. These cells exhibit a toggle switch response: exposure to 0.1 and 1 mM concentrations of Gd-DTPA enhances proliferation, which is hindered at a higher 10 mM concentration. Proliferation is enhanced when cells transition to 3D morphologies in post confluent conditions. The proliferation dependence on the concentration of CA is absent for Hs 578T and MDA-MB-231 triple negative cell lines. MCF-7 cells reveal a double toggle switch related to the expression of VEGF, which goes through high–low–high downregulation when cells are exposed to 0.1, 1, and 10 mM Gd-DTPA, respectively. Finally, doxorubicin drug response is assessed, which also reveals a double toggle switch behavior, where drug cytotoxicity exhibits a nonlinear dependence on the CA concentration. A toggle switch in cell characteristics that are exposed to 1 mM of Gd-DTPA amplifies the importance of this threshold, affecting several cell behaviors if surpassed. This work emphasizes the important effects that CAs can have on cells, specifically Gd-DTPA on MCF-7 cells, and the implications for cell growth and drug response during clinical and synthetic biology procedures.  相似文献   

2.
3.

Background

Genetic switches exhibit multistability, form the basis of epigenetic memory, and are found in natural decision making systems, such as cell fate determination in developmental pathways. Synthetic genetic switches can be used for recording the presence of different environmental signals, for changing phenotype using synthetic inputs and as building blocks for higher-level sequential logic circuits. Understanding how multistable switches can be constructed and how they function within larger biological systems is therefore key to synthetic biology.

Results

Here we present a new computational tool, called StabilityFinder, that takes advantage of sequential Monte Carlo methods to identify regions of parameter space capable of producing multistable behaviour, while handling uncertainty in biochemical rate constants and initial conditions. The algorithm works by clustering trajectories in phase space, and iteratively minimizing a distance metric. Here we examine a collection of models of genetic switches, ranging from the deterministic Gardner toggle switch to stochastic models containing different positive feedback connections. We uncover the design principles behind making bistable, tristable and quadristable switches, and find that rate of gene expression is a key parameter. We demonstrate the ability of the framework to examine more complex systems and examine the design principles of a three gene switch. Our framework allows us to relax the assumptions that are often used in genetic switch models and we show that more complex abstractions are still capable of multistable behaviour.

Conclusions

Our results suggest many ways in which genetic switches can be enhanced and offer designs for the construction of novel switches. Our analysis also highlights subtle changes in correlation of experimentally tunable parameters that can lead to bifurcations in deterministic and stochastic systems. Overall we demonstrate that StabilityFinder will be a valuable tool in the future design and construction of novel gene networks.
  相似文献   

4.
5.
Using the gene engineering methods, one can construct simple artificial gene networks with two stable functioning regimes (bistable genetic systems). Such genetic systems make it possible for cells with identical genotype to inherit two alternative phenotypes. The toggle switch is just one of the types of bistable genetic systems. In this work, we investigate the inheritance and switching of toggle switch functioning regimes in the cells at different culture growth phases. It is shown that during transition into the stationary growth phase the inheritance of stable states is disturbed and variations in the toggle-switching rate are more possible in different cells. Also, simultaneous expression of two genes of the system has been experimentally modelled. According to our results, the culture growth phase in this period determines later on the ratio between cell phenotypes in a population.  相似文献   

6.
Synthetic biology uses molecular biology to implement genetic circuits that perform computations. These circuits can process inputs and deliver outputs according to predefined rules that are encoded, often entirely, into genetic parts. However, the field has recently begun to focus on using mechanisms beyond the realm of genetic parts for engineering biological circuits. We analyse the use of electrogenic processes for circuit design and present a model for a merged genetic and electrogenetic toggle switch operating in a biofilm attached to an electrode. Computational simulations explore conditions under which bistability emerges in order to identify the circuit design principles for best switch performance. The results provide a basis for the rational design and implementation of hybrid devices that can be measured and controlled both genetically and electronically.  相似文献   

7.
This paper presents results on the design and analysis of a robust genetic Muller C-element. The Muller C-element is a standard logic gate commonly used to synchronize independent processes in most asynchronous electronic circuits. Synthetic biological logic gates have been previously demonstrated, but there remain many open issues in the design of sequential (state-holding) logic operations. Three designs are considered for the genetic Muller C-element: a majority gate, a toggle switch, and a speed-independent implementation. While the three designs are logically equivalent, each design requires different assumptions to operate correctly. The majority gate design requires the most timing assumptions, the speed-independent design requires the least, and the toggle switch design is a compromise between the two. This paper examines the robustness of these designs as well as the effects of parameter variation using stochastic simulation. The results show that robustness to timing assumptions does not necessarily increase reliability, suggesting that modifications to existing logic design tools are going to be necessary for synthetic biology. Parameter variation simulations yield further insights into the design principles necessary for building robust genetic gates. The results suggest that high gene count, cooperativity of at least two, tight repression, and balanced decay rates are necessary for robust gates. Finally, this paper presents a potential application of the genetic Muller C-element as a quorum-mediated trigger.  相似文献   

8.
We show that there is a physical analogy between a stochastic model of a genetic toggle switch system and a thermostated particle moving in a potential field, derived from the probability distribution of the toggle switch. This result suggests that one can actually simulate the dynamics of a more complex gene network by considering an ensemble of thermostated particles moving in a potential field, derived from the stationary distribution of the chemical stochastic model describing the gene network.  相似文献   

9.
10.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.  相似文献   

11.
Atkinson MR  Savageau MA  Myers JT  Ninfa AJ 《Cell》2003,113(5):597-607
Analysis of the system design principles of signaling systems requires model systems where all components and regulatory interactions are known. Components of the Lac and Ntr systems were used to construct genetic circuits that display toggle switch or oscillatory behavior. Both devices contain an "activator module" consisting of a modified glnA promoter with lac operators, driving the expression of the activator, NRI. Since NRI activates the glnA promoter, this creates an autoactivated circuit repressible by LacI. The oscillator contains a "repressor module" consisting of the NRI-activated glnK promoter driving LacI expression. This circuitry produced synchronous damped oscillations in turbidostat cultures, with periods much longer than the cell cycle. For the toggle switch, LacI was provided constitutively; the level of active repressor was controlled by using a lacY mutant and varying the concentration of IPTG. This circuitry provided nearly discontinuous expression of activator.  相似文献   

12.
13.
Many applications require cells to switch between discrete phenotypic states. Here, we harness the FimBE inversion switch to flip a promoter, allowing expression to be toggled between two genes oriented in opposite directions. The response characteristics of the switch are characterized using two-color cytometry. This switch is used to toggle between orthogonal chemosensory pathways by controlling the expression of CheW and CheW*, which interact with the Tar (aspartate) and Tsr* (serine) chemoreceptors, respectively. CheW* and Tsr* each contain a mutation at their protein-protein interface such that they interact with each other. The complete genetic program containing an arabinose-inducible FimE controlling CheW/CheW* (and constitutively expressed tar/tsr*) is transformed into an Escherichia coli strain lacking all native chemoreceptors. This program enables bacteria to swim toward serine or aspartate in the absence or in the presence of arabinose, respectively. Thus, the program functions as a multiplexer with arabinose as the selector. This demonstrates the ability of synthetic genetic circuits to connect to a natural signaling network to switch between phenotypes.  相似文献   

14.

Background

In favorable conditions bacterial doubling time is less than 20 min, shorter than DNA replication time. In E. coli a single round of genome replication lasts about 40 min and it must be accomplished about 20 min before cell division. To achieve such fast growth rates bacteria perform multiple replication rounds simultaneously. As a result, when the division time is as short as 20 min E. coli has about 8 copies of origin of replication (ori) and the average copy number of the genes situated close to ori can be 4 times larger than those near the terminus of replication (ter). It implies that shortening of cell cycle may influence dynamics of regulatory pathways involving genes placed at distant loci.

Results

We analyze this effect in a model of a genetic toggle switch, i.e. a system of two mutually repressing genes, one localized in the vicinity of ori and the other localized in the vicinity of ter. Using a stochastic model that accounts for cell growth and divisions we demonstrate that shortening of the cell cycle can induce switching of the toggle to the state in which expression of the gene placed near ter is suppressed. The toggle bistability causes that the ratio of expression of the competing genes changes more than two orders of magnitude for a two-fold change of the doubling time. The increasing stability of the two toggle states enhances system sensitivity but also its reaction time.

Conclusions

By fusing the competing genes with fluorescent tags this mechanism could be tested and employed to create an indicator of the doubling time. By manipulating copy numbers of the competing genes and locus of the gene situated near ter, one can obtain equal average expression of both genes for any doubling time T between 20 and 120 min. Such a toggle would accurately report departures of the doubling time from T.
  相似文献   

15.
《Biotechnology advances》2019,37(6):107393
Living organisms evolve complex genetic networks to interact with the environment. Due to the rapid development of synthetic biology, various modularized genetic parts and units have been identified from these networks. They have been employed to construct synthetic genetic circuits, including toggle switches, oscillators, feedback loops and Boolean logic gates. Building on these circuits, complex genetic machines with capabilities in programmable decision-making could be created. Consequently, these accomplishments have led to novel applications, such as dynamic and autonomous modulation of metabolic networks, directed evolution of biological units, remote and targeted diagnostics and therapies, as well as biological containment methods to prevent release of engineered microorganisms and genetic materials. Herein, we outline the principles in genetic circuit design that have initiated a new chapter in transforming concepts to realistic applications. The features of modularized building blocks and circuit architecture that facilitate realization of circuits for a variety of novel applications are discussed. Furthermore, recent advances and challenges in employing genetic circuits to impart microorganisms with distinct and programmable functionalities are highlighted. We envision that this review gives new insights into the design of synthetic genetic circuits and offers a guideline for the implementation of different circuits in various aspects of biotechnology and bioengineering.  相似文献   

16.
17.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

18.
We study the plasticity of a delayed stochastic model of a genetic toggle switch as a multipotent differentiation pathway switch, at the single cell and cell population levels, by observing distributions of differentiation pathways choices of genetically homogeneous cell populations. Assuming a model of stochastic pathway determination of cell differentiation that is regulated by the proteins of the switch, we vary the proteins’ expression level and degradation rates, which cells are known to be able to regulate, to vary mean level, noise, and bias of the proteins’ expression levels. It is shown that small changes in each of these dynamical features significantly and distinctively affects the dynamics of the switch at the single cell level and thus, the cell differentiation patterns. The regulation of these features allows cells to regulate their pluripotency and cell populations’ distribution of lineage choice, suggesting that the stochastic switch has high plasticity regarding differentiation pathway choice regulation, thus providing adaptability to environmental stresses and changes.  相似文献   

19.
20.
DA Hammer  NP Kamat 《FEBS letters》2012,586(18):2882-2890
We are on the verge of producing "synthetic cells," or protocells, in which some, many or all of the tasks of a real biological cell are harnessed into a synthetic platform. Such advances are made possible through genetic engineering, microfabrication technologies, and the development of cellular membranes from new surfactants that extend beyond phospholipids in stability and chemical control, and can be used to introduce designer functionality into membranes and cells. We review some of the recent advances in the development of synthetic cells and suggest future exciting directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号