首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

2.
This paper describes the aggregation in vitro of cells dissociated from imaginal discs and demonstrates the sorting out of undifferentiated cells from different imaginal discs and from differently determined regions of the same imaginal disc, as well as the abilities of such cells to undergo pattern reconstruction when injected into larvae. Dissociated cells begin to aggregate by 1.5 hr of rotation. By 5 hr of rotation, large aggregates of loosely associated cells appear. By 18 hr the aggregates have condensed and taken on a characteristic epithelial structure. To study sorting out in undifferentiated cells, we combined a histochemical stain for acid phosphatase with the use of the acid phosphatase null mutant acphn-11. We performed cell mixing experiments with 0-2 (prospective notum) and 2-8 (prospective wing) fragments, with the A and P (prospective anterior and posterior) fragments of the dorsal mesothoracic disc and with mixtures of cells from ventral prothoracic and dorsal mesothoracic discs. We found that prospective anterior and posterior dorsal mesothoracic cells do not sort out, but that prospective notum and wing and leg and wing cells do. The results from differentiated implants are consistent with those from undifferentiated mixes.  相似文献   

3.
In specific genetic backgrounds, a mutation in the tuh-3 gene results in the homeotic transformation of head structures to either leg disc derivatives or structures normally found in the extreme posterior end of wild-type animals. The origins of the homeotic structures were mapped to defined positions in the eye-antennal imaginal disc by transplanting abnormal regions of discs isolated from tuh-3 mutants into host mwh;e4 larvae. These metamorphosed implants were removed and differentiated structures were identified. Of 211 successfully recovered implants, 157 gave rise to homeotic tissue: abdominal tergite, male or female external genitalia and/or leg tissue. Transformations to abdominal tergite occurred primarily in cells taken from the eye region of the compound disc. Male and female genitalia arose most often in implants taken from the antennal portion of the disc, although some tissue taken from the lateral region of the eye disc also gave rise to external genitalia. Leg structures came exclusively from implants from the antennal region of the imaginal disc. These results suggest that cells from within specific regions of the eye-antennal compound disc are constrained in their developmental potential. An obvious constraint observed with this mutation is a dorsal/ventral one: Cells from the eye disc, a dorsal structure, primarily gave rise to other dorsal structures, abdominal tergite tissue. Cells from the antennal disc, a ventrally derived structure, primarily gave rise to other ventral structures including genital tissue and distal leg.  相似文献   

4.
The Drosophila wing and the dorsal thorax develop from primordia within the wing imaginal disc. Here we show that spalt major (salm) is expressed within the presumptive dorsal body wall primordium early in wing disc development to specify notum and wing hinge tissue. Upon ectopic salm expression, dorsally located second leg disc cells develop notum and wing hinge tissue instead of sternopleural tissue. Similarly, by salm over-expression within the wing disc, wing blade formation is suppressed and a mirror-image duplication of the notum and wing hinge is formed. In large dorsal clones, which lack salm and its neighboring paralogue spalt related (salr), the cells of the notum primordium do not grow; these dorsal cells are not specified as notum, hence no notum outgrowth develops. These results suggest that the zinc finger factors encoded by the salm/salr complex play important roles in defining cells of the early wing disc as dorsal body wall cells, which develop into a large dorsal body wall territory and form mesonotum and some wing hinge tissue, and in delimiting the wing primordium. We also find that salm activity is down-regulated by its own product and by that of the Pax gene eyegone.  相似文献   

5.
A new culture medium, ZW, and the preparation of an extract of adult Drosophila, FX, are described, which for the first time allow the in vitro proliferation of normal Drosophila cells in the absence of undefined heterologous components. Cells from 6-hour-old Drosophila embryos can extensively differentiate and/or proliferate in ZW supplemented with FX and insulin. Cells isolated from wing discs of 90–120-hour-old larvae require ecdysterone for proliferation in ZW, in addition to FX and insulin. Explanted ovaries, testes, genital discs and intact or halved wing discs of 100-hour-old larvae grow in the same medium, at least in part due to cell proliferation. High concentrations of ecdysterone prevent differentiation and/or proliferation of cells from embryos and from wing discs and cause the lysis of most isolated imaginal disc cells grown in vitro, while cuticular differentiations are induced in wing discs and disc fragments grown in vitro.  相似文献   

6.
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.  相似文献   

7.
Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling   总被引:5,自引:0,他引:5  
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.  相似文献   

8.
9.
During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade). Expression of the Iroquois complex (Iro-C) homeobox genes in the most proximal part of the disc defines the notum, since Iro-C(-) cells within this territory acquire the identity of the adjacent distal region, the wing hinge. Here we analyze how the expression of Iro-C is confined to the notum territory. Neither Wingless signalling, which is essential for wing development, nor Vein-dependent EGFR signalling, which is needed to activate Iro-C, appear to delimit Iro-C expression. We show that a main effector of this confinement is the TGFbeta homolog Decapentaplegic (Dpp), a molecule known to pattern the disc along its anterior-posterior axis. At early second larval instar, the Dpp signalling pathway functions only in the wing and hinge territories, represses Iro-C and confines its expression to the notum territory. Later, Dpp becomes expressed in the most proximal part of the notum and turns off Iro-C in this region. This downregulation is associated with the subdivision of the notum into medial and lateral regions.  相似文献   

10.
It has recently been suggested that the wildtype alleles of homeotic genes are responsible for controlling the development of compartments. Because the mutation engrailed gives the posterior wing compartment anterior characteristics, it can be regarded as such a homeotic gene. Our experiments confirm the role of the engrailed gene in development of the posterior wing compartment, results which strongly support and extend the compartment hypothesis.Clonal analysis reveals that the state of the engrailed gene is immaterial to the entire anterior compartment, and crucial to the normal development of the posterior compartment, where it controls the pattern of veins and bristles. The presence of a straight and precisely positioned compartment border is dependent on the activity of the engrailed gene until late in development. We suggest that this is due to the gene's effects on cell affinities of the posterior compartment.The engrailed mutation increases the size and changes the shape of the posterior compartment. engrailed clones cause local wing enlargement only if they are dorsal and include the posterior margin of the wing. Wildtype cells outside the clone contribute to this change of shape. This result suggests that the postero-dorsal margin is primarily responsible for the control of shape, and that the ventral compartment is, to some extent, modeled on the dorsal.  相似文献   

11.
Summary A number of mutants of Drosophila melanogaster are characterized by the absence of structures present in the wild type. Imaginal discs from the wing mutants vestigial, apterous-Xasta, Beadex and cut and from the eye mutants Bar, eyeless and lozenge were examined by light and electron microscopy. In all these mutants, with the exception of lozenge, clear evidence of degeneration was found. The onset and duration of degeneration and the number and distribution of dying cells were specific characteristics of each mutant. In most cases the degenerate areas of the disc could be correlated with the missing parts of the adult wing or eye. In contrast, in wild type wing and eye discs and in wing discs from the mutant miniature, which has a wing reduced in size but fully formed, extensive cell death was not observed.The ultrastructural features of the degenerating areas weresimilar in all the mutants studied. Conspicuous aspects of the cytolytic process included condensation and fragmentation of the dying cells followed by phagocytosis of the cell fragments by neighboring disc cells.The results indicate that localized cell death during development is a widespread occurrence among Drosophila mutants which exhibit structural deficiències.  相似文献   

12.
All imaginal discs in Drosophila are made up of a layer of columnar epithelium or the disc proper and a layer of squamous epithelium called the peripodial membrane. Although the developmental and molecular events in columnar epithelium or the disc proper are well understood, the peripodial membrane has gained attention only recently. Using the technique of lineage tracing, we show that peripodial and disc proper cells arise from a common set of precursors cells in the embryo, and that these cells diverge in the early larval stages. However, peripodial and disc proper cells maintain a spatial relationship even after the separation of their lineages. The peripodial membrane plays a significant role during the regional subdivision of the wing disc into presumptive wing, notum and hinge. The Egfr/Ras pathway mediates this function of the peripodial membrane. These results on signaling between squamous and columnar epithelia are particularly significant in the context of in vitro studies using human cell lines that suggest a role for the Egfr/Ras pathway in metastasis and tumour progression.  相似文献   

13.
The dachsous (ds) gene encodes a member of the cadherin family involved in the non-canonical Wnt signaling pathway that controls the establishment of planar cell polarity (PCP) in Drosophila. ds is the only known cadherin gene in Drosophila with a restricted spatial pattern of expression in imaginal discs from early stages of larval development. In the wing disc, ds is first expressed distally, and later is restricted to the hinge and lateral regions of the notum. Flies homozygous for strong ds hypomorphic alleles display previously uncharacterized phenotypes consisting of a reduction of the hinge territory and an ectopic notum. These phenotypes resemble those caused by reduction of the canonical Wnt signal Wingless (Wg) during early wing disc development. An increase in Wg activity can rescue these phenotypes, indicating that Ds is required for efficient Wg signaling. This is further supported by genetic interactions between ds and several components of the Wg pathway in another developmental context. Ds and Wg show a complementary pattern of expression in early wing discs, suggesting that Ds acts in Wg-receiving cells. These results thus provide the first evidence for a more general role of Ds in Wnt signaling during imaginal development, not only affecting cell polarization but also modulating the response to Wg during the subdivision of the wing disc along its proximodistal (PD) axis.  相似文献   

14.
Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial epithelia are poorly understood. In this report, we investigate the mechanisms that pattern the peripodial side of the wing imaginal disc during early larval development. At this time, the activities of the Wingless (Wg) and Epidermal growth factor receptor (Egfr) signalling pathways specify the prospective wing and notum fields, respectively. We show that peripodial epithelium specification occurs in the absence of Wingless and Egfr signalling. The ectopic activity in the peripodial epithelium of any of these signalling pathways transforms the shape of peripodial cells from squamous to columnar and resets their gene expression profile. Furthermore, peripodial cells where Wingless signalling is ectopically active acquire hinge identity, while ectopic Egfr activation results in notum specification. These findings suggest that suppression of Wg and Egfr activities is an early step in the development of the peripodial epithelium of the wing discs.  相似文献   

15.
16.
A clonal analysis of wild-type and aristapedia eye-antenna discs has shown that both discs are subdivided into anterior and posterior compartments. However, the spatial order of the anterior and posterior compartments is reversed in the adult, so that the posterior compartment is at the extreme anterior tip of the fly. The mutation aristapedia transforms both the anterior and the posterior antennal compartments into anterior and posterior leg compartments, respectively. The anteroposterior segregation is established in the eye-antenna disc during the larval period. This contrasts with other discs (leg, wing, proboscis) where the same segregation is established around blastoderm. The engrailed gene is involved in the segregation; some of the mutations in engrailed transform the posterior antennal compartment into a partial mirror image of the anterior one.  相似文献   

17.

Background  

The organization of the different tissues of an animal requires mechanisms that regulate cell-cell adhesion to promote and maintain the physical separation of adjacent cell populations. In the Drosophila imaginal wing disc the iroquois homeobox genes are expressed in the notum anlage and contribute to the specification of notum identity. These genes are not expressed in the adjacent wing hinge territory. These territories are separated by an approximately straight boundary that in the mature disc is associated with an epithelial fold. The mechanism by which these two cell populations are kept separate is unclear.  相似文献   

18.
19.
Using monoclonal antibodies specific for their protein products, the expression of the Ubx, Antp, and Scr genes was examined in imaginal discs and central nervous systems of esc-Drosophila larvae. In esc-mutants, both the Ubx and Scr proteins are expressed at increased levels or in new locations in the leg discs. Ubx also is expressed in new locations in the posterior wing disc and in small groups of cells in the antenna disc. The Antp protein is expressed ectopically in the eye-antenna disc; however, obvious abnormal expression of Antp was not found in the thoracic imaginal discs. Particularly striking is the fact that a single disc, such as the mesothoracic leg, can show increased expression of both a more "anterior" homeotic gene (Scr) and a more "posterior" gene (Ubx). Ectopic expression of Ubx and Antp, but not of Scr, is seen in the central nervous system of mutant larvae. These results are discussed with respect to the adult esc-phenotype and the differential effects of esc mutations on early and late development.  相似文献   

20.
Ten chemicals were assessed for blastomogenic activity in adult wts/+ heterozygotes of D. melanogaster. All of the strong mammalian carcinogens tested (benzo(a)pyrene (B(a)P), pyrene, aflatoxin B1, 2-acetylaminofluorene (2-AAF) and cis-dichlorodihydroxydiamminoplatinum IV) were also shown to be strong Drosophila blastomogens. They induced several times more tumors than their counterparts that are less carcinogenic for mammals (4-acetylaminofluorene (4-AAF), aflatoxins B2 and G2) and 4-(methylnitrosamino)-1-(-3-pyridine)-1-butanone (NNK). Benzo(e)pyrene (B(e)P) and pyrene demonstrated minor effects. Most tumors were localized on the wing and notum, which are the derivatives of the wing disc. Humeri derived from dorsal prothoracic disc and the abdominal tergites and sternites had the lowest number of tumors. The tumor frequency in the cross of the wild type females with wtsP2/TM6B males was different from that in the reciprocal cross. The former type of cross exhibited consistently higher tumor frequency both in the experimental and control series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号