首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colchicine forms a complex in vivo with a protein present in fertilized or unfertilized sea urchin eggs; similar binding was obtained in vitro with the soluble fraction from egg homogenates. Kinetic parameters and binding equilibrium constant were essentially the same in vivo and in vitro. The binding site protein was shown to have a sedimentation constant of 6S by zone centrifugation. The protein was present in extracts of the isolated mitotic apparatus at a concentration which was several times higher than in whole-egg homogenates. It was extracted from the mitotic apparatus at low ionic strength under conditions which lead to the disappearance of microtubules. No binding could be detected to the 27S protein, previously described by Kane, which is a major protein component of the isolated mitotic apparatus. The properties of the colchicine-bindinG protein, (binding constant, sedimentation constant, Sephadex elution volume) are similar to those obtained with the protein from mammalian cells, sea-urchin sperm tails, and brain tissue, and thus support the conclusion that the protein is a subunit of microtubules.  相似文献   

2.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

3.
The association of tubulin carboxypeptidase with microtubules may be involved in the determination of the tyrosination state of the microtubules, i.e. their proportion of tyrosinated vs. nontyrosinated tubulin. We investigated the role of protein phosphatases in the association of carboxypeptidase with microtubules in COS cells. Okadaic acid and other PP1/PP2A inhibitors, when added to culture medium before isolation of the cytoskeletal fraction, produced near depletion of the carboxypeptidase activity associated with microtubules. Isolation of the native assembled and nonassembled tubulin fractions from cells treated and not treated with okadaic acid, and subsequent in vitro assay of the carboxypeptidase activity, revealed that the enzyme was dissociated from microtubules by okadaic acid treatment and recovered in the soluble fraction. There was no effect by nor-okadaone (an inactive okadaic acid analogue) or inhibitors of PP2B and of tyrosine phosphatases which do not affect PP1/PP2A activity. When tested in an in vitro system, okadaic acid neither dissociated the enzyme from microtubules nor inactivated it. In living cells, prior stabilization of microtubules with taxol prevented the dissociation of carboxypeptidase by okadaic acid indicating that dynamic microtubules are needed for okadaic acid to exert its effect. On the other hand, stabilization of microtubules subsequent to okadaic acid treatment did not reverse the dissociating effect of okadaic acid. These results suggest that dephosphorylation (and presumably also phosphorylation) of the carboxypeptidase or an intermediate compound occurs while it is not associated with microtubules, and that the phosphate content determines whether or not the carboxypeptidase is able to associate with microtubules.  相似文献   

4.
The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates beta-tubulin both in vitro and in vivo. Phosphorylation occurs on Ser172 of beta-tubulin, a site that is well conserved in evolution. Using a phosphopeptide antibody, we find that a fraction of the cell tubulin is phosphorylated during mitosis, and this tubulin phosphorylation is inhibited by the Cdk1 inhibitor roscovitine. In mitotic cells, phosphorylated tubulin is excluded from microtubules, being present in the soluble tubulin fraction. Consistent with this distribution in cells, the incorporation of Cdk1-phosphorylated tubulin into growing microtubules is impaired in vitro. Additionally, EGFP-beta3-tubulin(S172D/E) mutants that mimic phosphorylated tubulin are unable to incorporate into microtubules when expressed in cells. Modeling shows that the presence of a phosphoserine at position 172 may impair both GTP binding to beta-tubulin and interactions between tubulin dimers. These data indicate that phosphorylation of tubulin by Cdk1 could be involved in the regulation of microtubule dynamics during mitosis.  相似文献   

5.
Gupta K  Panda D 《Biochemistry》2002,41(43):13029-13038
The dietary flavonoid quercetin has a broad range of biological activities, including potent antitumor activity against several types of tumors. Recently, it has been shown that quercetin inhibits cancer cells proliferation by depleting cellular microtubules and perturbing cellular microtubule functions. However, the direct interactions of quercetin with tubulin and microtubules have not been examined so far. Here, we found that quercetin inhibited polymerization of microtubules and depolymerized microtubules made from purified tubulin in vitro. The binding of quercetin with tubulin was studied using quercetin fluorescence and intrinsic tryptophan fluorescence of tubulin. Quercetin bound to tubulin at a single site with a dissociation constant of 5-7 microM, and it specifically inhibited colchicine binding to tubulin but did not bind at the vinblastine site. In addition, quercetin perturbed the secondary structure of tubulin, and the binding of quercetin stimulated the intrinsic GTPase activity of soluble tubulin. Further, quercetin stabilized tubulin against decay and protected two cysteine residues of tubulin toward chemical modification by 5,5'-dithiobis-2-nitrobenzoic acid. Our data demonstrated that the binding of quercetin to tubulin induces conformational changes in tubulin and a mechanism through which quercetin could perturb microtubule polymerization dynamics has been proposed. The data suggest that quercetin inhibits cancer cells proliferation at least in part by perturbing microtubule functions through tubulin binding.  相似文献   

6.
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein.  相似文献   

7.
We have established an in vitro assay to characterize the binding of endocytic carrier vesicles to microtubules. Magnetic beads coated with microtubules were used as an affinity matrix. A fraction from nocodazole-treated cells enriched in endocytic carrier vesicles, labeled with internalized horseradish peroxidase, was used in the binding experiments. Binding of the endocytic carrier vesicles to microtubules in vitro was cytosol-dependent. This activity of cytosolic factors was saturable, heat-sensitive, and insensitive to N-ethyl-maleimide. Binding was sensitive to GTP and ATP. Addition of neuronal microtubule-associated proteins completely abolished binding of the endocytic organelles to microtubules. This binding was independent of the cytosolic microtubule-based motor proteins kinesin and cytoplasmic dynein, since cytosol depleted of these proteins remained fully active. Microtubule-binding proteins from HeLa cells, however, stimulated the interaction of endocytic carrier vesicles with microtubules. Trypsinized vesicles could no longer bind to microtubules in the presence of cytosol. These results suggest that cytosolic microtubule-binding proteins, other than the known microtubule-based motor proteins, as well as membrane proteins are involved in the nucleotide-dependent interaction of endocytic carrier vesicles with microtubules.  相似文献   

8.
Colchicine, podophyllotoxin and vinblastine have been found to inhibit the action of vasopressin on water movement in the toad urinary bladder. Tubulin is the major colchicine binding component of toad bladder epithelial cells, accounting for approximately 3.3% of the total cell protein. More than 99% of the tubulin is found in the soluble fraction after sonication, the remainder is in the particulate fraction. Similar to the characteristics of the binding of colchicine to tubulins from other sources, the binding of colchicine to toad bladder tubulin is temperature- and time-dependent, is inhibited competitively by podophyllotoxin (Ki= 5.5 x 10(-7)m), and has a binding constant of 1 X 10(6) liters/mole at 37 degrees. Binding activity decays according to first-order kinetics and is stabilized by vinblastine. The characteristics of the interactions of colchicine and podophyllotoxin with epithelial cell tubulin in vitro closely parallel the ability of these drugs to inhibit the response to vasopressin in vivo. These results, coupled with those of functional and morphological studies, support the view that the ability of these drugs to affect vasopressin-induced water movement across toad bladder epithelial cells is related to the depolymerization of cytoplasmic microtubules.  相似文献   

9.
Colchicine was found to be taken up by adipose tissue and therein to bind to a soluble macromolecule not sedimented by centrifugation for 2 h at 100 000 × g. A similar binding occurred when soluble extracts of adipose tissue were incubated with colchicine. The binding reaction is temperature dependent and shows a pH optimum between 6.8 and 7.0. Double reciprocal plots of colchicine concentration versus amounts of colchicine bound to protein in the steady state disclosed an apparent Km of 0.250 to 1.5 ωM. The colchicine binding activity of soluble tissue extracts decreased when the extracts were incubated at 37°C. Addition of guanosine triphosphate and Mg2+ retarded the loss of colchicine binding activity. The molecular weight of the colchicine complex was estimated to be 115 000 and its sedimentation coefficient 5.8 S. All of these characteristics are remarkably similar to those of the protein tubulin which has been isolated from other tissues. Since it is now well known that tubulin is a protein subunit of cytoplasmic microtubules, it is suggested that the previously reported metabolic effects of colchicine on adipose tissue result from the dissolution of microtubules by colchicine.  相似文献   

10.
The soluble tubulin of human cerebral cortex, as assessed by [3H]colchicine binding of the 100,000g supernatant fraction, decreases drastically with age, 75 percent from age 0 to age 90. There is also a considerably lower concentration of high molecular weight proteins in the soluble fraction of postmortem human cerebral cortex than in that of nonhuman species. Human brain tubulin can be polymerized into microtubules with DEAE-dextran. The DEAE-dextran induced microtubules are stable to cold temperature (4°) and calcium. However, in the presence of 1 M glutamate, the microtubules become cold labile and depolymerize at 4°. Thus we have developed a novel method for purifying polymerization competent tubulin from fresh or frozen human cerebral cortex. Human brain tubulin purified by our novel method is very similar to tubulin from the brains of other mammals in molecular weight, amino acid composition, polymerization-depolymerization parameters, and structural dimensions of the microtubules formed.Some aspects of this work have been published as an abstract in 1981. Fed. Proc. 40:1548.  相似文献   

11.
Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.  相似文献   

12.
《The Journal of cell biology》1990,111(6):3023-3033
We have purified a 100-kD rat brain protein that has microtubule cross- linking activity in vitro, and have determined that it is dynamin, a putative microtubule-associated motility protein. We find that dynamin appears to be specific to neuronal tissue where it is present in both soluble and particulate tissue fractions. In the cytosol it is abundant, representing as much as 1.5% of the total extractable protein. Dynamin appears to be in particulate material due to association with a distinct subcellular membrane fraction. Surprisingly, by immunofluorescence analysis of PC12 cells we find that dynamin is distributed uniformly throughout the cytoplasm with no apparent microtubule association in either interphase, mitotic, or taxol-treated cells. Upon nerve growth factor (NGF) induction of PC12 cell differentiation into neurons, dynamin levels increase approximately twofold. In the cell body, the distribution of dynamin again remains clearly distinct from that of tubulin, and in axons, where microtubules are numerous and ordered into bundles, dynamin staining is sparse and punctate. On the other hand, in the most distal domain of growth cones, where there are relatively few microtubules, dynamin is particularly abundant. The dynamin staining of neurites is abolished by extraction of the cells with detergent under conditions that preserve microtubules, suggesting that dynamin in neurites is associated with membranes. We conclude that dynamin is a neuronal protein that is specifically associated with as yet unidentified vesicles. It is possible, but unproven, that it may link vesicles to microtubules for transport in differentiated axons.  相似文献   

13.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

14.
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.  相似文献   

15.
Purified neuronal and glial nuclei were separated from rat brain cells. The fraction rich in neuronal nuclei contained 68 ± 9 per cent neuronal nuclei and the fraction rich in glial nuclei contained 89 ± 6 per cent glial nuclei. The fraction rich in neuronal nuclei isolated from cells of adult rat brain incorporated l -[4,5-3H]leucine into TCA-insoluble material at a rate comparable to those of the microsomal and the soluble fractions of the brain, and at a much higher rate than the fraction rich in glial nuclei. The proteins soluble in buffered-saline, the acid-soluble deoxyribonucleoproteins, and the residual proteins of the neuronal nuclei are apparently the proteins which account for the higher specific activity of neuronal proteins compared with glial nuclear proteins. In liver and kidney, the incorporation of [3H]leucine into nuclear proteins was lower than into other subcellular fractions from the same organs.  相似文献   

16.
ISOLATION OF A PROTEIN SUBUNIT FROM MICROTUBULES   总被引:37,自引:27,他引:10       下载免费PDF全文
Sea-urchin sperm tails (Strongylocentrotus purpuratus) were obtained by amputation in synthetic sea water and were purified by differential centrifugation. Most of the arms of the outer nine doublets and soluble matrix proteins were removed by this treatment. The central pairs of microtubules were dissolved by dialysis against EDTA at pH 7.5. The extract contained essentially a single component, with a sedimentation constant of 6S, in amounts sufficient to account for the protein content of the central pairs. Incubation of the extract with colchicine-3H gave binding levels approaching 0.5–1.0 mole of colchicine per 105 g protein. Sucrose-gradient analysis showed that the bound-radioactivity profile coincided with the optical-density profile of the 6S protein. It is concluded that the 6S colchicine-binding protein is a subunit of microtubules.  相似文献   

17.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

18.
The microtubule-targeted drug, taxol, enhances assembly of alphabeta tubulin dimers into microtubules. Recent work has established that taxol also elicits diverse effects on intracellular signaling. In-gel kinase assays with myelin basic protein as substrate revealed that taxol treatment significantly (P 相似文献   

19.
Centromere-dependent binding of yeast minichromosomes to microtubules in vitro   总被引:15,自引:0,他引:15  
J Kingsbury  D Koshland 《Cell》1991,66(3):483-495
We present an in vitro assay for yeast centromere function; isolated yeast minichromosomes require a functional centromere to bind to bovine microtubules and sediment with them. Centromere-bovine microtubule complexes form at physiological microtubule concentrations. Two of the three centromere DNA elements, which are necessary for centromere function in vivo, are also necessary for centromeres to bind microtubules in vitro. However, purified centromere DNA alone does not bind to microtubules. These results suggest that microtubule binding must be mediated by the two centromere DNA elements and factors that associate with one or both of them. The percent of centromeres with microtubule-binding activity is 7- to 10-fold higher in lysates made from nocodazole-arrested G2-M cells than from alpha factor G1 cells, suggesting that this centromere activity is regulated during the cell cycle. The potential of this assay for dissecting centromere assembly, function, and regulation is discussed.  相似文献   

20.
Antibodies to tubulin were prepared in rabbits by immunization with reduced-carboxymethylated calf-brain tubulin. In immunodiffusion tests the antibodies showed full cross reactivity with the immunogen as well as with native calf-brain tubulin. The same antibodies showed cross reactivity with a factor in extract of cotton (Gossypium hirsutum L.) cotyledons but there was no full immunological identity between calf-brain tubulin and this factor. A solid-phase radioimmunoassay for quantitative estimation of this plant tubulin-like factor was developed. It measured the binding of antibodies to immobilized calf-native tubulin. Competition between the unknown soluble tubulin-like factor, and immobilized tubulin was assayed at serum dilution of 1:50. Extraction conditions which preserved the antigenic properties of the tubulin-like factor from cotton cotyledons were defined. The radioimmunoassay measured quantities of the tubulin-like factor in the range of 0.1–10 g-equivalents of calf-brain tubulin. Immediately after homogenization of the tissue only 25% of the total amount of tubulin-like activity was present in soluble form, while most of it remained in the insoluble fraction. Apparent maximal solubilization was achieved spontaneously 10 h after homogenization or by treatment with guanidine hydrochloride. These results indicate that in this material, tubulin is not released immediately by homogenization but remains assembled in microtubules and-or in a bound or sequestered form.Abbreviations NRS normal rabbit serum - RCM reduced-carboxymethylated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号