首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA cloning and expression of acutin   总被引:19,自引:0,他引:19  
Acutin, a thrombin-like enzyme was purified from Agkistrodon acutus venom in three steps by DEAE-Sepharose CL-6B, Superose 12 column on FPLC and Mono-Q column chromatographies. Its first 15 N-terminal amino acid residues sequence was then determined and the acutin cDNA was isolated from venom gland total RNA using RT-PCR. Determination of its nucleotide sequence allowed elucidation of the amino acid sequence of mature peptide for the first time. The mature acutin has 233 amino acids and its amino acid sequence exhibits significant homology with those of thrombin-like enzymes from crotaline snakes venoms. Based on the homology, the catalytic residues and disulfide bridges of acutin were deduced to be as follows: catalytic residues, His41, Asp84 and Ser179; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys231, Cys118-Cys185, Cys150-Cys164, Cys175-Cys200. The recombinant acutin has been expressed in E. coli and purified by affinity column. The renatured recombinant acutin is reported for the first time to have the activity of clotting fibrinogen and arginine-esterase.  相似文献   

2.
Crotalidae and Viperidae snake venoms contains several kinds of metalloproteinases which cause localized hemorrhage by direct action on blood vessel walls. We report here the entire amino acid sequence and the disulfide bridge locations of HT-2, one of the hemorrhagic toxins isolated from the venom of Crotalus ruber ruber (red rattlesnake). The non-reduced protein was first cleaved at methionine residues to provide a set of 8 fragments, which covered the entire sequence of HT-2. The disulfide bridge locations of HT-2 were also determined by using these primary fragments. The unambiguous sequence for the whole protein was then established by conventional methods using lysyl endopeptidase and thermolysin digests. HT-2 consisted of 202 amino acid residues with two disulfide bridges, which were assigned to Cys-117-Cys-197 and Cys-157-Cys-164. HT-2 had a typical zinc-chelating sequence His-Glu-X-X-His (residues 142-146) found in thermolysin, and its overall sequence showed, respectively, 50, 52, and 53% identities to those of HR2a, H2-proteinase, and the metalloproteinase domain of HR1B. However, the disulfide bridge locations of HT-2 were different from those in the other metalloproteinases. The primary structure of HT-2 was more closely related to that of Ht-d from Crotalus atrox recently determined (81% identity). From the structural comparison with five metalloproteinases so far elucidated, six conservative amino acid residues, which may possibly be related to the induction of the hemorrhagic activity, were suggested to be present in these toxins.  相似文献   

3.
CheB, the methylesterase of chemotactic bacteria, catalyzes the hydrolysis of glutamyl-methyl esters in bacterial chemoreceptor proteins. The two cysteines predicted by the amino acid sequence of CheB were replaced by alanine residues. The resulting mutants, Cys207-Ala, Cys309-Ala and a double cysteine mutant Cys207-Ala/Cys309-Ala, retained methylesterase activity, indicating that sulfhydryls are not crucial for CheB mediated catalysis. A homology search revealed a conserved serine active-site region between residues 162 and 166 which is homologous to the active-site region of acetylcholine esterases, suggesting that Ser164 of CheB is the active-site nucleophile. Oligonucleotide-directed mutagenesis was used to change the serine to a cysteine. This Ser164-Cys mutant had less than 2% of the wild-type activity. Unlike the serine proteinases which utilize a 'catalytic triad' mechanism, CheB does not have the conserved histidine and aspartic acid residues located in positions N-terminal to the active-site serine. In addition, CheB is not labeled with di-isopropylfluorophosphate, a potent inhibitor of other serine hydrolases. A novel mechanism is proposed for CheB involving substrate-assisted catalysis to account for these apparent anomalies.  相似文献   

4.
长白蝮蛇类凝血酶基因的克隆及分析   总被引:1,自引:1,他引:0  
从长白蝮蛇(Agkistrodon halys Ussurin)毒腺中抽提总RNA,采用RT-PCR扩增其类凝血酶基因,经全序列测定,获得2个类凝血酶基因,ussurin和ussurase,它们全长分别为708和699个核苷酸,即分别编码236和233个氨基酸;根据同源性,推测它们的活性中心分别为His^43,Asp^88和Ser^182与His^40,Asp^85和Ser^179;二硫键分别为Cys^7-Cys^141,Cys^28-Cys^44,Cys^76-Cys^234,Cys^120-Cys^188,Cys^152-Cys^167和Cys^178-Cys^203;与Cys^7-Cys^138,Cys^25-Cys^41,Cys^73-Cys^231,Cys^117-Cys^185,Cys^149-Cys^164和Cys^175-Cys^200。该蛇毒类凝血酶cDNA序列及推导的氨基酸序列为首次报道。  相似文献   

5.
Primary structure of nuclease P1 from Penicillium citrinum   总被引:3,自引:0,他引:3  
The primary structure of nuclease P1, which cleaves both RNA and single-stranded DNA, from Penicillium citrinum was elucidated. The complete amino acid sequence consisting of 270 residues was determined by analysis of peptides obtained by digestion with Achromobacter protease I of the reduced and S-aminoethylated protein and by digestion with Staphylococcus aureus V8 protease of the reduced and S-carboxymethylated protein. Four half-cystine residues were assigned to Cys72-Cys217 and Cys80-Cys85. N-Glycosylated asparagine residues were identified at positions 92, 138, 184 and 197. Fast-atom-bombardment and laser-ionization MS were successfully used to confirm the determined amino acid sequences of peptides and to estimate the molecular mass of this glycoprotein having heterogenous sugar moieties, respectively. Comparison of the amino acid sequence of nuclease P1 with other nucleases revealed that the protein has a high degree of sequence identity (50%) with nuclease S1 from Aspergillus oryzae. The His-Phe-Xaa-Asp-Ala sequence (positions 60-64) is similar to the sequence (His-Phe-Asp-Ala) involving the active-site His119 of bovine pancreatic RNase A, and the Pro-Leu-His sequence (positions 124-126) is identical with the sequence involving the active-site His134 of porcine pancreatic DNase I.  相似文献   

6.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

7.
8.
The complete amino acid sequence of a non-hemorrhagic fibrino(geno)lytic enzyme (VlF) isolated from Vipera lebetina venom has been determined. VlF was subjected to separate enzymatic and chemical digestions. Resulting fragments were purified by RP-HPLC and subjected for sequencing by automated Edman degradation. The amino terminus of VlF was determined by mass spectrometry. VlF was shown to be composed of 202 residues having a relative molecular mass of 22,826 Da and containing a zinc-binding site and a catalytically active residue. It displayed significant sequence similarities with many other mature metalloproteinases reported from snake venoms. Sequence comparison of hemorrhagic and non-hemorrhagic mature metalloproteinases revealed the presence at the C-terminal part of the enzymes of two residues common to only hemorrhagic metalloproteinases and two others shared by only non-hemorrhagic ones.  相似文献   

9.
从长白蝮蛇(Agkistrodon halys Ussuriensis)毒腺中抽提总RNA,采用RT-PCR扩增其类凝血酶基因,经全序列测定,类凝血酶基因Ussurin全长为708个核苷酸,即编码236个氨基酸;根据同源性,推测它的活性中心为His^43,Asp^88和Ser^182;二硫键为Cys^7-Cys^141,Cys^28-Cys^44,Cys^76-Cys^234,Cys^120-Cys^188,Cys^152-Cys^167和Cys^178-Cys^203。该蛇毒类凝血酶cDNA序列及推导的氨基酸序列均为首次报道。  相似文献   

10.
Saxatilin is a 7.7 kDa disintegrin that belongs to a family of homologous protein found in several snake venoms. Six disulfide bond locations of the disintegrin were determined by enzymatic cleavage and matrix-assisted-laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Functional implications of the disulfide bonds related to the biological activity of saxatilin were investigated with recombinant protein species produced by site-directed mutagenesis of saxatilin. Several lines of experimental evidence indicated that three disulfide bonds, Cys21-Cys35, Cys29-Cys59, and Cys47-Cys67, of the disintegrin are closely associated with its biological function such as its ability to block the binding of integrin GPIIb-IIIa and alpha(v)beta(3) with fibrinogen and extracellular matrix. Those disulfide linkages were also revealed to be important for maintaining the functional structure of the protein molecule. On the other hand, the disulfide bridges of Cys6-Cys15 and Cys8-Cys16 do not appear to be critical for the molecular structure and function of saxatilin.  相似文献   

11.
The nuclear magnetic resonance structure of the globular domain with residues 121-230 of a variant human prion protein with two disulfide bonds, hPrP(M166C/E221C), shows the same global fold as wild-type hPrP(121-230). It contains three alpha-helices of residues 144-154, 173-194 and 200-228, an anti-parallel beta-sheet of residues 128-131 and 161-164, and the disulfides Cys166-Cys221 and Cys179-Cys214. The engineered extra disulfide bond in the presumed "protein X"-binding site is accommodated with slight, strictly localized conformational changes. High compatibility of hPrP with insertion of a second disulfide bridge in the protein X epitope was further substantiated by model calculations with additional variant structures. The ease with which the hPrP structure can accommodate a variety of locations for a second disulfide bond within the presumed protein X-binding epitope suggests a functional role for the extensive perturbation by a natural second disulfide bond of the corresponding region in the human doppel protein.  相似文献   

12.
A fibrino(geno)lytic nonhemorrhagic metalloprotease (neuwiedase) was purified from Bothrops neuwiedi snake venom by a single chromatographic step procedure on a CM-Sepharose column. Neuwiedase represented 4.5% (w/w) of the crude desiccated venom, with an approximate Mr of 20,000 and pI 5.9. As regards the amino acid composition, neuwiedase showed similarities with other metalloproteases, with high proportions of Asx, Glx, Leu, and Ser. Atomic absorption spectroscopy showed that one mole of Zn2+ and one mole of Ca2+ were present per mole of protein. The cDNA encoding neuwiedase was isolated by RT-PCR from venom gland RNA, using oligonucleotides based on the partially determined amino-acid sequences of this metalloprotease. The full sequence contained approximately 594 bp, which codified the 198 amino acid residues with an estimated molecular weight of 22,375. Comparison of the nucleotide and amino acid sequences of neuwiedase with those of other snake venom metalloproteases showed a high level of sequential similarity. Neuwiedase has two highly conserved characteristics sequences H142E143XXH146XXG149XXH152 and C164I165M166. The three-dimensional structure of neuwiedase was modeled based on the crystal structure of Crotalus adamanteus Adamalysin II. This model revealed that the zinc binding site region showed a high structural similarity with other metalloproteases. The proteolyitc specificity, using the Bbeta-chain of oxidized insulin as substrate, was shown to be directed to the Ala14-Leu15 and Tyr16-Leu17 peptide bonds which were preferentially hydrolyzed. Neuwiedase is a Aalpha,Bbeta fibrinogenase. Its activity upon the Aalpha chain of fibrinogen was detected within 15 min of incubation. The optimal temperature and pH for the degradation of both Aalpha and Bbeta chains were 37 degrees C and 7.4-8.0, respectively. This activity was inhibited by EDTA and 1,10-phenantroline. Neuwiedase also showed proteolytic activity upon fibrin and some components of the extracellular matrix. However, it did not show TAME esterase activity and was not able to inhibit platelet aggregation.  相似文献   

13.
The complete primary structure of a galactose-specific lectin contained in the venom of the rattlesnake, Crotalus atrox, was determined. The lectin is composed of two covalently linked, identical subunits, each consisting of 135 amino acid residues. Under physiological conditions the lectin proved to be highly aggregated. The venom lectin contained 9 half-cystines, 8 of which formed four intrasubunit disulfide bridges (Cys3-Cys14, Cys31-Cys131, Cys38-Cys133, and Cys106-Cys123), while Cys86 was involved in an intersubunit disulfide bridge. Because of the high content of disulfide bridges, the intact lectin was extremely resistant to tryptic digestion. The determined amino acid sequence was found to be homologous with those of the so-called carbohydrate recognition domains of Ca2(+)-dependent-type lectins in animal. Among them, 8 amino acid residues (Cys31, Gly69, Trp92, Pro97, Cys106, Asp120, Cys123, and Cys131) were completely conserved. Leu40, Trp67, and Trp81 were also well conserved. The rattlesnake venom lectin showed high hemagglutinating activity. These results, together with the occurrence of similar lectins in crotalid venoms, suggest that these lectins have evolved in order to make the venom a more effective weapon to capture prey animals.  相似文献   

14.
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.  相似文献   

15.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

16.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent alpha-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10-Cys40, Cys20-Cys99, Cys54-Cys86 and Cys67-Cys73 were located in the N-terminal domain, and Cys108-Cys138, Cys117-Cys195, Cys152-Cys182 and Cys163-Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galbeta1-4GlcNAcbeta1-2Manalpha1-6-(NeuAc-Galbeta1-4GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAc-Asn.  相似文献   

17.
The major pepsin inhibitor from Ascaris suum was isolated by affinity chromatography and chromatofocusing. Its amino acid sequence was determined by automated Edman degradation of peptide fragments. Peptides were produced by chemical and enzymatic cleavage of pyridylethylated protein and were purified by reverse-phase high-performance liquid chromatography. The inhibitor consists of 149 residues with the following sequence: QFLFSMSTGP10FICTVKDNQV20FVANLPWTML30EGDDIQVGKE40 FAARVEDCTN50VKHDMAPTCT60KPPPFCGPQD70MKMFNFVGCS80VLGNKLFIDQ90KYVRDLTAK D100 HAEVQTFREK110IAAFEEQQEN120QPPSSGMPHG130AVPAGGLSPP140PPPSFCTVQ149. It has a molecular weight of 16,396. All cysteines are engaged as disulfide bonds: Cys(13)-Cys(59), Cys(48)-Cys(66), and Cys(79)-Cys(146). The protein is probably composed of two domains connected by a short hydrophobic region. This is the first aspartyl protease inhibitor of animal origin that has been sequenced. The sequence has no significant homology with any other known protein.  相似文献   

18.
Dekhil H  Wisner A  Marrakchi N  El Ayeb M  Bon C  Karoui H 《Biochemistry》2003,42(36):10609-10618
The venoms of Viperidae snakes contain numerous serine proteinases that have been recognized to possess one or more of the essential activities of thrombin on fibrinogen and platelets. Among them, a platelet proaggregant protein, cerastocytin, has been isolated from the venom of the Tunisian viper Cerastes cerastes. Using the RACE-PCR technique, we isolated and identified the complete nucleotide sequence of a cDNA serine proteinase precursor. The recombinant protein was designated rCC-PPP (for C. cerastes platelet proaggregant protein), since its deduced amino acid sequence is more than 96% identical to the partial polypeptide sequences that have been determined for natural cerastocytin. The structure of the rCC-PPP cDNA is similar to that of snake venom serine proteinases. The expression of rCC-PPP in Escherichia coli system allowed, for the first time, the preparation and purification of an active protein from snake venom with platelet proaggregant and fibrinogenolytic activities. Purified rCC-PPP efficiently activates blood platelets at nanomolar (8 nM) concentrations, as do natural cerastocytin (5 nM) and thrombin (1 nM). It is able to clot purified fibrinogen and to hydrolyze alpha-chains. Thus, rCC-PPP could be therefore considered a cerastocytin isoform. By comparison with other snake venom serine proteinases, a Gly replaces the conserved Cys(42). This implies that rCC-PPP lacks the conserved Cys(42)-Cys(58) disulfide bridge. A structural analysis performed by molecular modeling indicated that the segment of residues Tyr(67)-Arg(80) of rCC-PPP corresponds to anion-binding exosite 1 of thrombin that is involved in its capacity to induce platelet aggregation. Furthermore, the surface of the rCC-PPP molecule is characterized by a hydrophobic pocket, comprising the 90 loop (Phe(90)-Val(99)), Tyr(172), and Trp(215) residues, which might be involved in the fibrinogen clotting activity of rCC-PPP.  相似文献   

19.
F X Gomis-Rüth  L F Kress    W Bode 《The EMBO journal》1993,12(11):4151-4157
Adamalysin II, a 24 kDa zinc endopeptidase from the snake venom of Crotalus adamanteus, is a member of a large family of metalloproteinases isolated as small proteinases or proteolytic domains of mosaic haemorrhagic proteins from various snake venoms. Homologous domains have recently been detected in multimodular mammalian reproductive tract proteins. The 2.0 A crystal structure of adamalysin II reveals an ellipsoidal molecule with a shallow active-site cleft separating a relatively irregularly folded subdomain from the calcium-binding main molecular body composed of a five-stranded beta-sheet and four alpha-helices. The folding of the peptide fragment containing the zinc-binding motif HExxHxxGxxH bears only a distant resemblance to thermolysin, but is identical to that found in astacin, with the three histidines and a water molecule (linked to the glutamic acid) likewise constituting the zinc ligand; adamalysin II lacks a fifth (tyrosine) zinc ligand, however, leaving its zinc ion tetrahedrally co-ordinated. Furthermore, adamalysin II and astacin share an identical active-site basement formed by a common Metturn. Due to their virtually identical active-site environment and similar folding topology, the snake venom metalloproteinases (hitherto called adamalysins) and the astacins (and presumably also the matrix metalloproteinases/mammalian collagenases and the Serratia proteinase-like large bacterial proteinases) might be grouped into a common superfamily with distinct differences from the thermolysin family.  相似文献   

20.
Chalcone synthase (CHS) catalyzes formation of the phenylpropanoid chalcone from one p-coumaroyl-CoA and three malonyl-coenzyme A (CoA) thioesters. The three-dimensional structure of CHS [Ferrer, J.-L., Jez, J. M., Bowman, M. E., Dixon, R. A., and Noel, J. P. (1999) Nat. Struct. Biol. 6, 775-784] suggests that four residues (Cys164, Phe215, His303, and Asn336) participate in the multiple decarboxylation and condensation reactions catalyzed by this enzyme. Here, we functionally characterize 16 point mutants of these residues for chalcone production, malonyl-CoA decarboxylation, and the ability to bind CoA and acetyl-CoA. Our results confirm Cys164's role as the active-site nucleophile in polyketide formation and elucidate the importance of His303 and Asn336 in the malonyl-CoA decarboxylation reaction. We suggest that Phe215 may help orient substrates at the active site during elongation of the polyketide intermediate. To better understand the structure-function relationships in some of these mutants, we also determined the crystal structures of the CHS C164A, H303Q, and N336A mutants refined to 1.69, 2.0, and 2.15 A resolution, respectively. The structure of the C164A mutant reveals that the proposed oxyanion hole formed by His303 and Asn336 remains undisturbed, allowing this mutant to catalyze malonyl-CoA decarboxylation without chalcone formation. The structures of the H303Q and N336A mutants support the importance of His303 and Asn336 in polarizing the thioester carbonyl of malonyl-CoA during the decarboxylation reaction. In addition, both of these residues may also participate in stabilizing the tetrahedral transition state during polyketide elongation. Conservation of the catalytic functions of the active-site residues may occur across a wide variety of condensing enzymes, including other polyketide and fatty acid synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号