首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP.  相似文献   

2.
The GFP folding reporter assay uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility, but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter and the robustly-folding "superfolder" GFP. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37 degrees C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites.  相似文献   

3.
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.  相似文献   

4.
Eukaryotic genomes encode a considerably higher fraction of multi-domain proteins than their prokaryotic counterparts. It has been postulated that efficient co-translational and sequential domain folding has facilitated the explosive evolution of multi-domain proteins in eukaryotes by the recombination of pre-existent domains. Here, we tested whether eukaryotes and bacteria differ generally in the folding efficiency of multi-domain proteins generated by domain recombination. To this end, we compared the folding behavior of a series of recombinant proteins comprised of green fluorescent protein (GFP) fused to four different robustly folding proteins through six different linkers upon expression in Escherichia coli and the yeast Saccharomyces cerevisiae. We found that, unlike yeast, bacteria are remarkably inefficient at folding these fusion proteins, even at comparable levels of expression. In vitro and in vivo folding experiments demonstrate that the GFP domain imposes significant constraints on de novo folding of its fusion partners in bacteria, consistent with a largely post-translational folding mechanism. This behavior may result from an interference of GFP with adjacent domains during folding due to the particular topology of the beta-barrel GFP structure. By following the accumulation of enzymatic activity, we found that the rate of appearance of correctly folded fusion protein per ribosome is indeed considerably higher in yeast than in bacteria.  相似文献   

5.
The rapid assessment of protein solubility is essential for evaluating expressed proteins and protein variants for use as reagents for downstream studies. Solubility screens based on antibody blots are complex and have limited screening capacity. Protein solubility screens using split beta-galactosidase in vivo and in vitro can perturb protein folding. Split GFP used for monitoring protein interactions folds poorly, and to overcome this limitation, we recently developed a protein-tagging system based on self-complementing split GFP derived from an exceptionally well folded variant of GFP termed 'superfolder GFP'. Here we present the step-by-step procedure of the solubility assay using split GFP. A 15-amino-acid GFP fragment, GFP 11, is fused to a test protein. The GFP 1-10 detector fragment is expressed separately. These fragments associate spontaneously to form fluorescent GFP. The fragments are soluble, and the GFP 11 tag has minimal effect on protein solubility and folding. We describe high-throughput protein solubility screens amenable both for in vivo and in vitro formats. The split-GFP system is composed of two vectors used in the same strain: pTET GFP 11 and pET GFP 1-10 (Fig. 1 and Supplementary Note online). The gene encoding the protein of interest is cloned into the pTET GFP 11 vector (resulting in an N-terminal fusion) and transformed into Escherichia coli BL21 (DE3) cells containing the pET GFP 1-10 plasmid. We also describe how this system can be used for selecting soluble proteins from a library of variants (Box 1). The large screening power of the in vivo assay combined with the high accuracy of the in vitro assay point to the efficiency of this two-step split-GFP tool for identifying soluble clones suitable for purification and downstream applications.  相似文献   

6.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

7.
8.
An expression/purification system was developed using artificial oil bodies (AOB) as carriers for producing recombinant proteins. A target protein, green fluorescent protein (GFP), was firstly expressed in Escherichia coli as an insoluble recombinant protein fused to oleosin, a unique structural protein of seed oil bodies, by a linker sequence susceptible to factor Xa cleavage. Artificial oil bodies were constituted with triacylglycerol, phospholipid, and the insoluble recombinant protein, oleosin-Xa-GFP. After centrifugation, the oleosin-fused GFP was exclusively found on the surface of artificial oil bodies presumably with correct folding to emit fluorescence under excitation. Proteolytic cleavage with factor Xa separated soluble GFP from oleosin embedded in the artificial oil bodies; thus after re-centrifugation, GFP of high yield and purity was harvested simply by concentrating the ultimate supernatant.  相似文献   

9.
We have improved our green fluorescent protein (GFP) folding reporter technology [Waldo et al., (1999) Nat. Biotechnol. 17, 691–695] to evolve recalcitrant proteins from Mycobacterium tuberculosis. The target protein is inserted into the scaffolding of the GFP, eliminating false-positive artifacts caused by expression of truncated protein variants from internal cryptic ribosome binding sites in the target RNA. In parallel, we have developed a new quantitative fluorescent protein tagging and detection system based on micro-domains of GFP. This split-GFP system, which works both in vivo and in vitro, is amenable to high-throughput assays of protein expression and solubility [Cabantous et al., (2005) Nat. Biotechnol. 23, 102–107]. Together, the GFP folding reporter and split-GFP technologies offer a comprehensive system for manipulating and improving protein folding and solubility.  相似文献   

10.
Zhang A  Cantor EJ  Barshevsky T  Chong S 《Gene》2005,350(1):25-31
Green fluorescent protein (GFP) has been used to report protein folding by correlating solubility with fluorescence. In a GFP fusion protein, an upstream aggregation-prone domain can disrupt de novo folding of the GFP domain in Escherichia coli, resulting in a loss of fluorescence. Previously, we showed that prevention of misfolding of the upstream aggregation-prone domain by a coupled folding and binding interaction during protein synthesis restored both GFP fluorescence and solubility. Since molecular chaperones often fold nascent polypeptides through a bind-and-release interaction, the question remains whether the chaperone interaction with the upstream aggregation-prone domain enhances GFP fluorescence. Here, we demonstrate that a significant increase in GFP fluorescence occurred only when appropriate chaperones that recognized the aggregation-prone protein and helped its folding were co-expressed. A possible correlation between GFP fluorescence and the productive folding by chaperones is proposed. This study may provide a general strategy for identifying chaperones specific for difficult-to-fold proteins.  相似文献   

11.
12.
Many recombinant proteins have been used as drugs; however, human proteins expressed using heterologous hosts are often insoluble. To obtain correctly folded active proteins, many optimizations of expression have been attempted but usually are found to be applicable only for specific targets. Interleukin-18 (IL-18) has a key role in many severe disorders including autoimmune diseases, and therapeutic approaches using IL-18 have been reported. However, production of IL-18 in Escherichia coli resulted in extensive inclusion body formation and previous conventional screenings of expression conditions could obtain only a condition with a low yield. To address the problem, we applied a folding reporter system using green fluorescent protein (GFP) for screening of the expression conditions for hIL-18. The established system efficiently screened many conditions, and optimized conditions for the expression of hIL-18 significantly enhanced the final yield of the active protein. Systematic screening using a GFP reporter system could be applied for the production of other proteins and in other organisms.  相似文献   

13.
Fisher AC  DeLisa MP 《PloS one》2008,3(6):e2351
Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar 'superfolded' proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues.  相似文献   

14.
Many enzymes or fluorescent proteins produced in Escherichia coli are enzymatically active or fluorescent respectively when deposited as inclusion bodies. The occurrence of insoluble but functional protein species with native-like secondary structure indicates that solubility and conformational quality of recombinant proteins are not coincident parameters, and suggests that both properties can be engineered independently. We have here proven this principle by producing elevated yields of a highly fluorescent but insoluble green fluorescent protein (GFP) in a DnaK- background, and further enhancing its solubility through adjusting the growth temperature and GFP gene expression rate. The success of such a two-step approach confirms the independent control of solubility and conformational quality, advocates for new routes towards high quality protein production and intriguingly, proves that high protein yields dramatically compromise the conformational quality of soluble versions.  相似文献   

15.
The fast and easy in vivo detection predestines the green fluorescent protein (GFP) for its use as a reporter to quantify promoter activities. We have increased the sensitivity of GFP detection 320-fold compared to the wild-type by constructing gfp+, which contains mutations improving the folding efficiency and the fluorescence yield of GFP+. Twelve expression levels were measured using fusions of the gfp+ and lacZ genes with the tetA promoter in Escherichia coli. The agreement of GFP+ fluorescence with beta-galactosidase activities was excellent, demonstrating that the gfp+ gene can be used to accurately quantify gene expression in vivo. However, expression of the gfp+ gene from the stronger hsp60 promoter revealed that high cellular concentrations of GFP+ caused an inner filter effect reducing the fluorescence by 50%, thus underestimating promoter activity. This effect is probably due to the higher absorbance of cells containing GFP+. Thus promoters with activities differing by about two orders of magnitude can be correctly quantified using the gfp+ gene. Possibilities of using GFP variants beyond this range are discussed.  相似文献   

16.
Expression of green fluorescent protein (GFP) in Escherichia coli (E. coli) resulted in only small amount of soluble and fluorescent GFP protein and hence most of the protein in insoluble particles. The expressed GFP in insoluble particles, however, was fluorescent, indicating that it is at least in part folded with an intact chromophore. The GFP in insoluble particles could not be solubilized by an aqueous (denaturant-free) buffer. Solubilization of active GFP from insoluble particles was then attempted with guanidine hydrochloride (GdnHCl), a strong protein-denaturant, or L-arginine, an aggregation suppressor. Solubilization from insoluble particles by 6M GdnHCl led to complete denaturation of the GFP existing in insoluble particles, while GdnHCl solution at lower concentration could solubilize fluorescent GFP. Solubilization of fluorescently active GFP from insoluble particles was also achieved by L-arginine. It is noteworthy that L-arginine was stronger in solubilizing insoluble GFP than GdnHCl below 2M. These results demonstrate that some proteins expressed in E. coli may form insoluble particles containing native conformation and L-arginine may be used to recover the proteins in the native form from such insoluble particles.  相似文献   

17.
18.
We describe a novel vector-host system suitable for the efficient preparation of fluorescent single-chain antibody Fv fragments (scFv) in Escherichia coli. The previously described pscFv1F4 vector used for the bacterial expression of functional scFv to the E6 protein of human papillomavirus type 16 was modified by appending to its C-terminus the green fluorescent protein (GFP). The expression of the scFv1F4-GFP fusion proteins was monitored by analyzing of the typical GFP fluorescence of the transformed cells under UV illumination. The brightest signal was obtained when scFv1F4 was linked to the cycle 3 GFP variant (GFPuv) and expressed in the cytoplasm of AD494(DE3) bacteria under control of the arabinose promoter. Although the scFv1F4 expressed under these conditions did not contain disulfide bridges, about 1% of the molecules were able to bind antigen. Fluorescence analysis of antigen-coated agarose beads incubated with the cytoplasmic scFv-GFP complexes showed that a similar proportion of fusions retained both E6-binding and green-light-emitting activities. The scFv1F4-GFPuv molecules were purified by affinity chromatography and successfully used to detect viral E6 protein in transfected COS cells by fluorescence microscopy. When an anti-beta-galactosidase scFv, which had previously been adapted to cytoplasmic expression at high levels, was used in this system, it was possible to produce large amounts of functional fluorescent antibody fragments. This indicates that these labeled scFvs may have many applications in fluorescence-based single-step immunoassays.  相似文献   

19.
The preparation of proteins for structural and functional analysis using the Escherichia coli expression system is often hampered by the formation of insoluble intracellular protein aggregates (inclusion bodies). Transferring those proteins into their native states by in vitro protein folding requires screening for the best buffer conditions and suitable additives. However, it is difficult to assess the success of such a screen if no biological assay is available. We established a fully automated folding screen and a system to detect folded protein that is based on analytical hydrophobic interaction chromatography and tryptophan fluorescence spectroscopy. The system was evaluated with two model enzymes (carbonic anhydrase II and malate dehydrogenase), and was successfully applied to the folding of the p22 subunit of human dynactin, which is expressed in inclusion bodies in E. coli. The described screen allows for high-throughput folding analysis of inclusion body proteins for structural and functional analyses.  相似文献   

20.
The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号