首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein.  相似文献   

2.
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1–5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.  相似文献   

3.
Generally, halophilic enzymes present a characteristic amino acid composition, showing an increase in the content of acidic residues and a decrease in the content of basic residues, particularly lysines. The latter decrease appears to be responsible for a reduction in the proportion of solvent-exposed hydrophobic surface. This role was investigated by site-directed mutagenesis of glucose dehydrogenase from Haloferax mediterranei, in which surface aspartic residues were changed to lysine residues. From the biochemical analysis of the mutant proteins, it is concluded that the replacement of the aspartic residues by lysines results in slightly less halotolerant proteins, although they retain the same enzymatic activities and kinetic parameters compared to the wild type enzyme.  相似文献   

4.
Until now, the glycation reaction was considered to be a nonspecific reaction between reducing sugars and amino groups of random proteins. We were able to identify the intermediate filament vimentin as the major target for the AGE modification N(epsilon)-(carboxymethyl)lysine (CML) in primary human fibroblasts. This glycation of vimentin is neither based on a slow turnover of this protein nor on an extremely high intracellular expression level, but remarkably it is based on structural properties of this protein. Glycation of vimentin was predominantly detected at lysine residues located at the linker regions using nanoLC-ESI-MS/MS. This modification results in a rigorous redistribution of vimentin into a perinuclear aggregate, which is accompanied by the loss of contractile capacity of human skin fibroblasts. CML-induced rearrangement of vimentin was identified as an aggresome. This is the first evidence that CML-vimentin represents a damaged protein inside the aggresome, linking the glycation reaction directly to aggresome formation. Strikingly, we were able to prove that the accumulation of modified vimentin can be found in skin fibroblasts of elderly donors in vivo, bringing AGE modifications in human tissues such as skin into strong relationship with loss of organ contractile functions.  相似文献   

5.
Diabetes mellitus is one of the most common non-communicable diseases, and is the fifth leading cause of death in most of the developed countries. It can affect nearly every organ and system in the body and may result in blindness, end stage renal disease, lower extremity amputation and increase risk of stroke, ischaemic heart diseases and peripheral vascular disease. Hyperglycemia in diabetes causes non-enzymatic glycation of free amino groups of proteins (of lysine residues) and leads to their structural and functional changes, resulting in complications of the diabetes. Glycation of proteins starts with formation of Shiff's base, followed by intermolecular rearrangement and conversion into Amadori products. When large amounts of Amadori products are formed, they undergo cross linkage to form a heterogeneous group of protein-bound moieties, termed as advanced glycated end products (AGEs). Rate of these reactions are quite slow and only proteins with large amounts of lysine residues undergo glycation with significant amounts of AGEs. The formation of AGEs is a irreversible process, causing structural and functional changes in protein leading to various complications in diabetes like nephropathy, retinopathy, neuropathy and angiopathy. The present review discusses about role of glycation in various complications of diabetes.  相似文献   

6.
Ageing and diabetes share a common deleterious phenomenon, the formation of Advanced Glycation Endproducts (AGEs), which accumulate predominantly in collagen due to its low turnover. Though the general picture of glycation has been identified, the detailed knowledge of which collagen amino acids are involved in AGEs is still missing. In this work we use an atomistic model of a collagen fibril to pinpoint, for the first time, the precise location of amino acids involved in the most relevant AGE, glucosepane. The results show that there are 14 specific lysine–arginine pairs that, due to their relative position and configuration, are likely to form glucosepane. We find that several residues involved in AGE crosslinks are within key collagen domains, such as binding sites for integrins, proteoglycans and collagenase, hence providing molecular-level explanations of previous experimental results showing decreased collagen affinity for key molecules. Altogether, these findings reveal the molecular mechanism by which glycation affects the biological properties of collagen tissues, which in turn contribute to age- and diabetes-related pathological states.  相似文献   

7.
The non-enzymatic reaction between reducing sugars and proteins, known as glycation, has received increased attention from nutritional and medical research. In addition, there is a large interest in obtaining glycoconjugates of pure well-characterized oligosaccharides for biological research. In this study, glycation of bovine serum albumin (BSA) by d-glucose, d-galactose and d-lactose under dry-heat at 60 degrees C for 30, 60, 120, 180 or 240 min was assessed and the glycated products studied in order to establish their biological recognition by lectins. BSA glycation was monitored using gel electrophoresis, determination of available amino groups and lectin binding assays. The BSA molecular mass increase and glycation sites were investigated by mass spectrometry and through digestion with trypsin and chymotrypsin. Depending on time and type of sugar, differences in BSA conjugation were achieved. Modified BSA revealed reduction of amino groups' availability and slower migration through SDS/PAGE. d-galactose was more reactive than d-glucose or d-lactose, leading to the coupling of 10, 3 and 1 sugar residues, respectively, after 120 minutes of reaction. BSA lysines (K) were the preferred modified amino acids; both K256 and K420 appeared the most available for conjugation. Only BSA-lactose showed biological recognition by specific lectins.  相似文献   

8.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

9.
Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation.  相似文献   

10.
The studies reported are concerned with the functional consequences of the chemical modifications of the lysines and carboxyl-containing amino acids of bovine rhodopsin. The 10 non-active-site lysine residues of rhodopsin can be completely dimethylated and partially acetimidated (8-9 residues) with no loss in the ability of the proteins to activate the G protein when photolyzed or to regenerate with 11-cis-retinal. These modifications do not alter the net charge on the protein. Surprisingly, heavy acetylation of these lysines (eight to nine residues) with acetic anhydride, which neutralizes the positive charges of the lysine residues, yields a modified rhodopsin fully capable of activating the G protein and being regenerated. It is concluded that the non-active-site lysine residues of rhodopsin are not importantly and directly involved in interactions with the G protein during photolysis. However, this is not to say that they are unimportant in maintaining the tertiary structure of the protein because heavy modification of these residues by succinylation and trinitrophenylation produces proteins incapable of G protein activation, although the succinylated protein still regenerated. The active-site lysine of rhodopsin was readily modified and prevented from regenerating with 11-cis-retinal and with o-salicylaldehyde and o-phthalaldehyde/mercaptoethanol, two sterically similar aromatic aldehyde containing reagents which react by entirely different mechanisms. It is suggested that rhodopsin contains an aromatic binding site within its active-site region. Monoethylation, but not monomethylation, of the active-site lysine also prevented regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effect of phosphate on the kinetics and specificity of glycation of protein   总被引:1,自引:0,他引:1  
The glycation (nonenzymatic glycosylation) of several proteins was studied in various buffers in order to assess the effects of buffering ions on the kinetics and specificity of glycation of protein. Incubation of RNase with glucose in phosphate buffer resulted in inactivation of the enzyme because of preferential modification of lysine residues in or near the active site. In contrast, in the cationic buffers, 3-(N-morpholino)propane-sulfonic acid and 3-(N-tris(hydroxymethyl)methyl-amino)-2-hydroxypropanesulfonic acid, the kinetics of glycation of RNase were decreased 2- to 3-fold, there was a decrease in glycation of active site versus peripheral lysines, and the enzyme was resistant to inactivation by glucose. The extent of Schiff base formation on RNAse was comparable in the three buffers, suggesting that phosphate, bound in the active site of RNase, catalyzed the Amadori rearrangement at active site lysines, leading to the enhanced rate of inactivation of the enzyme. Phosphate catalysis of glycation was concentration-dependent and could be mimicked by arsenate. Phosphate also stimulated the rate of glycation of other proteins, such as lysozyme, cytochrome c, albumin, and hemoglobin. As with RNase, phosphate affected the specificity of glycation of hemoglobin, resulting in increased glycation of amino-terminal valine versus intrachain lysine residues. 2,3-Diphosphoglycerate exerted similar effects on the glycation of hemoglobin, suggesting that inorganic and organic phosphates may play an important role in determining the kinetics and specificity of glycation of hemoglobin in the red cell. Overall, these studies establish that buffering ions or ligands can exert significant effects on the kinetics and specificity of glycation of proteins.  相似文献   

12.
A recombinant non-glycosylated and acidic form of avidin was designed and expressed in soluble form in baculovirus-infected insect cells. The mutations were based on the same principles that guided the design of the chemically and enzymatically modified avidin derivative, known as NeutraLite Avidin. In this novel recombinant avidin derivative, five out of the eight arginine residues were replaced with neutral amino acids, and two of the lysine residues were replaced by glutamic acid. In addition, the carbohydrate-bearing asparagine-17 residue was altered to an isoleucine, according to the known sequences of avidin-related genes. The resultant mutant protein, termed recombinant NeutraLite Avidin, exhibited superior properties compared to those of avidin, streptavidin and the conventional NeutraLite Avidin, prepared by chemo-enzymatic means. In this context, the recombinant mutant is a single molecular species, which possesses strong biotin-binding characteristics. Due to its acidic pI, it is relatively free from non-specific binding to DNA and cells. The recombinant NeutraLite Avidin retains seven lysines per subunit, which are available for further conjugation and derivatization.  相似文献   

13.
Pyridoxal-5-phosphate (in a lesser degree, pyridoxal) interacts with both non-protonated and protonated exposed epsilon-amino groups of lysine residues and with alpha-amino groups in human serum albumin and pancreatic ribonuclease A. The reaction of Schiff base formation proceeds within a wide pH range--from 3.0 to 12.0. At a great pyridoxal-5-phosphate excess in ribonuclease A in neutral or slightly acidic aqueous media all the ten epsilon-amino groups of lysine residues and the alpha-amino groups of Lys-1 become modified. The formation of aldimine bonds of pyridoxal-5-phosphate with protonated amino groups in acidic media is determined by ionization of its phenol hydroxyl and phosphate residues. Acetaldehyde, propionic aldehyde and pyridine aldehyde interact only with non-protonated amino groups of the proteins. The equilibrium constants of pyridoxal-5-phosphate and other aldehydes binding to proteins and amino acids were determined. The rate constants of Schiff base formation for pyridoxal-5-phosphates with some amino acids and primary sites of proteins for direct and reverse reactions were calculated.  相似文献   

14.
In the presence of Ca2+ and glucose, calmodulin incorporates 2.5 mol of glucose/mol of protein. In the absence of Ca2+, only 1.5 mol of glucose is incorporated per mole of calmodulin. Glycation of calmodulin is associated with variable reductions in its capacity to activate three Ca2+/calmodulin-dependent brain target enzyme systems, including adenylyl cyclase, phosphodiesterase, and protein kinase. In addition, glycated calmodulin exhibits a 54% reduction in its Ca2+ binding capacity. Isolated CNBr cleavage fragments of glycated calmodulin suggest that glycation follows a nonspecific pattern in that each of seven available lysines is susceptible to modification. A limit observed on the extent of glycation appears related to the accompanying increase in negative charge on the protein. Glycation results in minimal structural rearrangements in calmodulin, and the Ca2+-induced increase in alpha-helix content and radius of gyration is the same for glycated and unmodified calmodulin. Since glycated calmodulin's Ca2+ binding capacity is reduced, this implies that the Ca2+-induced conformational changes in calmodulin do not require all four Ca2+ binding sites to be occupied. Examination of the lysine positions in calmodulin suggests that Ca2+ binding to domains II and IV is sufficient to induce these changes. The functional consequences of calmodulin glycation therefore cannot be attributed to inhibition of these conformational changes. An alternative explanation is that the inhibition arises from interference at the target enzyme binding site by bound glucose. While glycation shows minimal structural effects, a large pH dependence is observed for the alpha-helix content of unmodified calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The amino acids lysine and glycine are reported to react with glucose at physiological pH and temperature and undergo non-enzymic glycation. Three other amino acids present in relatively larger amounts in the lens i.e. alanine, aspartic acid and glutamic acid were also found to undergo non-enzymic glycation as found by incorporation of uniformly labelled (U-[14C]) glucose into the amino acids. The glucose incorporation was 1.6 to 2.5% for alanine, 35 to 50% for aspartic acid and 2.3 to 3.3% for glutamic acid. Each amino acid of varying concentrations lowered the extent ofin vitro glycation of lens proteins significantly in glucose-treated homogenates of normal lens from humans. The decrease in glycation for alanine was between 32 and 69%, that for aspartate was between 18 and 74%, and for glutamate was between 52 to 74%. Decreased glycation was greater for higher concentrations of glucose. Scavenging of intracellular glucose and decreasing the extent of glycation of lens proteins could be the mechanism of action by which the amino acids alanine, aspartic acid and glutamic acid could exercise a beneficial effect on cataract and diabetic retinopathy.  相似文献   

16.
Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs.  相似文献   

17.
Biotinylation is useful for the detection, purification and immobilization of proteins. It is performed by chemical modification, although position-specific and quantitative biotinylation is rarely achieved. We developed a position-specific biotinylation method using biotinylated non-natural amino acids. We showed that biotinylated p-aminophenylalanine derivatives were incorporated into a protein more efficiently than biotinylated lysine derivatives in a cell-free translation system. In addition, the biotinylated p-aminophenylalanines overcame the serious position-dependency observed for biotinylated lysines. The present method will be useful for detection and purification of proteins along with comprehensive exploration of surface-exposed residues and oriented immobilization of proteins.  相似文献   

18.
Conserved lysines and arginines within amino acids 140-150 of apolipoprotein (apo) E are crucial for the interaction between apoE and the low density lipoprotein receptor (LDLR). To explore the roles of amphipathic alpha-helix and basic residue organization in the binding process, we performed site-directed mutagenesis on the 22-kDa fragment of apoE (amino acids 1-191). Exchange of lysine and arginine at positions 143, 146, and 147 demonstrated that a positive charge rather than a specific basic residue is required at these positions. Consistent with this finding, substitution of neutral amino acids for the lysines at positions 143 and 146 reduced the binding affinity to about 30% of the wild-type value. This reduction corresponds to a decrease in free energy of binding of approximately 600 cal/mol, consistent with the elimination of a hydrogen-bonded ion pair (salt bridge) between a lysine on apoE and an acidic residue on the LDLR. Binding activity was similarly reduced when K143 and K146 were both mutated to arginine (K143R + K146R), indicating that more than the side-chain positive charge can be important.Exchanging lysines and leucines indicated that the amphipathic alpha-helical structure of amino acids 140-150 is critical for normal binding to the low density lipoprotein receptor.  相似文献   

19.
Human erythrocytes are continuously exposed to glucose, which reacts with the amino terminus of the β-chain of hemoglobin (Hb) to form glycated Hb, HbA1c, levels of which increase with the age of the circulating cell. In contrast to extensive insights into glycation of hemoglobin, little is known about glycation of erythrocyte membrane proteins. In the present study, we explored the conditions under which glucose and ribose can glycate spectrin, both on the intact membrane and in solution and the functional consequences of spectrin glycation. Although purified spectrin could be readily glycated, membrane-associated spectrin could be glycated only after ATP depletion and consequent translocation of phosphatidylserine (PS) from the inner to the outer lipid monolayer. Glycation of membrane-associated spectrin led to a marked decrease in membrane deformability. We further observed that only PS-binding spectrin repeats are glycated. We infer that the absence of glycation in situ is the consequence of the interaction of the target lysine and arginine residues with PS and thus is inaccessible for glycation. The reduced membrane deformability after glycation in the absence of ATP is likely the result of the inability of the glycated spectrin repeats to undergo the obligatory unfolding as a consequence of interhelix cross-links. We thus postulate that through the use of an ATP-driven phospholipid translocase (flippase), erythrocytes have evolved a protective mechanism against spectrin glycation and thus maintain their optimal membrane function during their long circulatory life span.  相似文献   

20.
Glycation of purified preparations of amino acids, hemoglobin and albumin has been studied. The content of glycated blood proteins in children with different diseases (diabetes mellitus, thyroid gland function disturbances, obesity, neurodermititis) has been determined. Application of the protein glycation for diagnosis and prediction of diseases is proved to be expedient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号