首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial processing peptidase (MPP) recognizes a large variety of basic presequences of mitochondrial preproteins and cleaves the single site, often including arginine, at the -2 position (P(2)). To elucidate the recognition and specific processing of the preproteins by MPP, we mutated to alanines at acidic residues conserved in a large internal cavity formed by the MPP subunits, alpha-MPP and beta-MPP, and analyzed the processing efficiencies for various preproteins. We report here that alanine mutations at a subsite in rat beta-MPP interacting with the P(2) arginine cause a shift in the processing site to the C-terminal side of the preprotein. Because of reduced interactions with the P(2) arginine, the mutated enzymes recognize not only the N-terminal authentic cleavage site with P(2) arginine but also the potential C-terminal cleavage site without a P(2) arginine. In fact, it competitively cleaves the two sites of the preprotein. Moreover, the acidified site of alpha-MPP, which binds to the distal basic site in the long presequence, recognized the authentic P(2) arginine as the distal site in compensation for ionic interaction at the proximal site in the mutant MPP. Thus, MPP seems to scan the presequence from beta- to alpha-MPP on the substrate binding scaffold inside the MPP cavity and finds the distal and P(2) arginines on the multiple subsites on both MPP subunits. A possible mechanism for substrate recognition and cleavage is discussed here based on the notable character of a subsite-deficient mutant of MPP in which the substrate specificity is altered.  相似文献   

2.
Mitochondrial processing peptidase (MPP), a metalloendopeptidase consisting of alpha- and beta-subunits, specifically cleaves off the N-terminal presequence of the mitochondrial protein precursor. Structural information of the substrate bound to MPP was obtained using fluorescence resonance energy transfer (FRET) measurement. A series of the peptide substrates, which have distal arginine residues required for effective cleavage at positions -7, -10, -14, and -17 from the cleavage site, were synthesized and covalently labeled with 7-diethyl aminocoumarin-3-carboxylic acid at the N termini and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) at position +4, as fluorescent donor and acceptor, respectively. When the peptides were bound to MPP, substantially the same distances were obtained between the two probes, irrespective of the length of the intervening sequence between the two probes. When 7-diethylamino-3-(4'-maleimidyl phenyl)-4-methyl coumarin was introduced into a single cysteine residue in beta-MPP as a donor and IANBD was coupled either at the N terminus or the +4 position of the peptide substrate as an acceptor, intermolecular FRET measurements also demonstrated that distances of the donor-acceptor pair were essentially the same among the peptides with different lengths of intervening sequences. The results indicate that the N-terminal portion and the portion around the cleavage site of the presequence interact with specific sites in the MPP molecule, irrespective of the length of the intervening sequence between the two portions, suggesting the structure of the intervening sequence is flexible when bound to the MPP.  相似文献   

3.
BACKGROUND: Mitochondrial processing peptidase (MPP) is a metalloendopeptidase that cleaves the N-terminal signal sequences of nuclear-encoded proteins targeted for transport from the cytosol to the mitochondria. Mitochondrial signal sequences vary in length and sequence, but each is cleaved at a single specific site by MPP. The cleavage sites typically contain an arginine at position -2 (in the N-terminal portion) from the scissile peptide bond in addition to other distal basic residues, and an aromatic residue at position +1. Mitochondrial import machinery recognizes amphiphilic helical conformations in signal sequences. However, it is unclear how MPP specifically recognizes diverse presequence substrates. RESULTS: The crystal structures of recombinant yeast MPP and a cleavage-deficient mutant of MPP complexed with synthetic signal peptides have been determined. MPP is a heterodimer; its alpha and beta subunits are homologous to the core II and core I proteins, respectively, of the ubiquinol-cytochrome c oxidoreductase complex. Crystal structures of two different synthetic substrate peptides cocrystallized with the mutant MPP each show the peptide bound in an extended conformation at the active site. Recognition sites for the arginine at position -2 and the +1 aromatic residue are observed. CONCLUSIONS: MPP bound two mitochondrial import presequence peptides in extended conformations in a large polar cavity. The presequence conformations differ from the amphiphilic helical conformation recognized by mitochondrial import components. Our findings suggest that the presequences adopt context-dependent conformations through mitochondrial import and processing, helical for recognition by mitochondrial import machinery and extended for cleavage by the main processing component.  相似文献   

4.
Pea glutathione reductase (GR) is dually targeted to mitochondria and chloroplasts by means of an N-terminal signal peptide of 60 amino acid residues. After import, the signal peptide is cleaved off by the mitochondrial processing peptidase (MPP) in mitochondria and by the stromal processing peptidase (SPP) in chloroplasts. Here, we have investigated determinants for processing of the dual targeting signal peptide of GR by MPP and SPP to examine if there is separate or universal information recognised by both processing peptidases. Removal of 30 N-terminal amino acid residues of the signal peptide (GRDelta1-30) greatly stimulated processing activity by both MPP and SPP, whereas constructs with a deletion of an additional ten amino acid residues (GRDelta1-40) and deletion of 22 amino acid residues in the middle of the GR signal sequence (GRDelta30-52) could be cleaved by SPP but not by MPP. Numerous single mutations of amino acid residues in proximity of the cleavage site did not affect processing by SPP, whereas mutations within two amino acid residues on either side of the processing site had inhibitory effect on processing by MPP with a nearly complete inhibition for mutations at position -1. Mutation of positively charged residues in the C-terminal half of the GR targeting peptide inhibited processing by MPP but not by SPP. An inhibitory effect on SPP was detected only when double and triple mutations were introduced upstream of the cleavage site. These results indicate that: (i) recognition of processing site on a dual targeted GR precursor differs between MPP and SPP; (ii) the GR targeting signal has similar determinants for processing by MPP as signals targeting only to mitochondria; and (iii) processing by SPP shows a low level of sensitivity to single mutations on targeting peptide and likely involves recognition of the physiochemical properties of the sequence in the vicinity of cleavage rather than a requirement for specific amino acid residues.  相似文献   

5.
Mitochondrial processing peptidase (MPP), consisting of alpha and beta subunits, recognizes a large variety of N-terminal extension peptides of mitochondrial precursor proteins, and generally cleaves a single site of the peptide including arginine at the -2 position (P(2)). We obtained evidence that Glu(191) and Asp(195) of rat beta subunit interact with P(2) arginine of precursor protein through ionic and hydrogen bonds, respectively, using recombinant MPP. Mutation to alanines at Glu(191) and Asp(195) reduced processing activity toward precursors with P(2) arginine, but resulted in no loss of activity toward P(2) alanine precursors. Charge-complementary mutation demonstrated that MPP variants with beta Arg(191) exhibited compensatory processing activity for the precursor with acidic residue at the P(2) position. Thus, Glu(191) and Asp(195) are substrate-binding sites required for cleavage of extension peptides through interaction with P(2) arginine.  相似文献   

6.
Nuclear-encoded mitochondrial precursor proteins are proteolytically processed inside the mitochondrion after import. The general mitochondrial processing activity in plant mitochondria has been shown to be integrated into the cytochrome bc1 complex of the respiratory chain. Here we investigate the occurrence of an additional, matrix-located processing activity by incubation of the precursors of the soybean mitochondrial proteins, alternative oxidase, the FAd subunit of the ATP synthetase and the tobacco F1 subunit of the ATP synthase, with the membrane and soluble components of mitochondria isolated from soybean cotyledons and spinach leaves. A matrix-located peptidase specifically processed the precursors to the predicted mature form in a reaction which was sensitive to orthophenanthroline, a characteristic inhibitor of mitochondrial processing peptidase (MPP). The specificity of the matrix peptidase was illustrated by the inhibition of processing of the alternative oxidase precursor in both soybean and spinach matrix extracts upon altering a single amino acid residue in the targeting presequence (-2 Arg to Gly). Additionally, there was no evidence for general proteolysis of precursor proteins incubated with the matrix. The purity of the matrix fractions was ascertained by spectrophotometric and immunological analyses. The results demonstrate that there is a specific processing activity in the matrix of soybean and spinach in addition to the previously well characterized membrane-bound MPP integrated into the cytochrome bc1 complex of the respiratory chain.  相似文献   

7.
Mitochondrial processing peptidase (MPP) specifically cleaves off the N-terminal presequence of the mitochondrial protein precursor. Previous studies demonstrated that Arg at position -2 from the cleavage site, which is found among many precursors, plays a critical role in recognition by MPP. We analyzed the structural elements of bovine cytochrome P450 side-chain cleavage enzyme precursor [pre-P450(SCC)], which has Ala at position -2, for recognition by MPP. Replacement of Ala position -2 of pre-P450(SCC) with Arg resulted in an increase in the cleavage rate. Replacement with Gly caused a reduction in the cleavage rate and the appearance of an additional cleavage site downstream of the authentic site. A pre-P450(SCC) mutant with Met at position -2 retained cleavage efficiency equal to that of the wild type. These results indicate that -2 Ala of pre-P450(SCC) is recognized by MPP as a determinant for precise cleavage, and that the amino acid at -2 is required to have a straight methylene chain for interaction with the S(2) site. The preference for distal basic residues, a hydrophobic residue at +1, and hydroxyl residues at +2 and +3, was almost the same as those of the precursors with Arg at -2, indicating that the recognition mechanism of pre-P450(SCC) by MPP is essentially the same as that of the precursors with Arg at position -2.  相似文献   

8.
Duby G  Degand H  Boutry M 《FEBS letters》2001,505(3):409-413
We sought to determine the structural features involved in the processing of the mitochondrial F1-ATPase beta-subunit (F1beta) presequence (54 residues) from Nicotiana plumbaginifolia. The cleavage efficiency of F1beta presequence mutants linked to the green fluorescent protein (GFP) was evaluated in vivo in tobacco by in situ microscopy and Western blotting. The residue at position -1 (Tyr) was required to be an aromatic residue and the residue at position +2 (Thr) was found to be important for F1beta processing, while, unexpectedly, changing the distal (Arg-15) and proximal (Arg-5) arginine residues did not strongly reduce processing. In addition, results also supported the requirement of a helical structure around the cleavage position. Sequencing of the mature form of a precursor containing the first 30 residues of the F1beta presequence linked to GFP revealed the presence of a cryptic cleavage site between residues 26 and 27, which showed the features of a classical mitochondrial processing site, suggesting dual processing of the F1beta presequence. In vitro processing confirmed these data and showed that processing was sensitive to o-phenanthroline, thus catalyzed by mitochondrial processing peptidase.  相似文献   

9.
Mitochondrial processing peptidase (MPP), which is composed of heterodimeric alpha-MPP and beta-MPP subunits. It specifically recognizes mitochondrial preproteins and removes their basic N-terminal signal prepeptides. In order to elucidate the spatial orientation of the preproteins toward MPP, which has been missed by crystal structures of a yeast MPP including a synthetic prepeptide in its acidic proteolytic chamber, we analysed the fluorescence resonance energy transfer (FRET) between EGFP fused to a yeast aconitase presequence (preEGFP) and regiospecific 7-dietylamino-3-(4'-maleimidyl phenyl)-4-methyl coumarin (CPM)-labelled yeast MPPs. FRET efficiencies of 65 and 55% were observed between the EGFP chromophore and CPM-Ser(84) and -Lys(156) of beta-MPP, respectively, leading to calculated distances between the molecules of 48 and 50 A, respectively. Considering the FRET results and the structural validity based on the crystal structure of the MPP-presequence complex, a plausible model of preEGFP associated with MPP was constructed in silico. The modelled structure indicated that amino acid residues on the C-terminal side of the cleavage site in the preprotein were orientated tail out from the large cavity of MPP and interacted with the glycine-rich loop of alpha-MPP. Thus, MPP orientates preproteins at the specific cleft between the catalytic domain and the flexible glycine-rich loop which seems to pinch the extended polypeptide.  相似文献   

10.
Studies with a synthetic presequence peptide, F1 beta 1-20, corresponding to the NH2-terminal 20 amino acids of the F1-ATPase beta-subunit precursor (pF1 beta) show that although this peptide binds avidly to phospholipid bi-layers it does not efficiently compete for import of full-length precursor into mitochondria, Ki approximately 100 microM (Hoyt, D.W., Cyr, D.M., Gierasch, L.M., and Douglas, M.G. (1991) J. Biol. Chem. 266, 21693-21699). Herein we report that longer F1 beta presequence peptides F1 beta 1-32 + 2, F1 beta 1-32SQ + 2, and F1 beta 21-51 + 3 compete for mitochondrial import at 1000-, 250-, and 25-fold lower concentrations, respectively, than F1 beta 1-20. A longer peptide, F1 beta 1-51 + 3, was no more effective as an import competitor than F1 beta 1-32 + 2. Both minimal length and amphiphilic character appear required in order for F1 beta peptides to block mitochondrial import. Import competition by longer F1 beta peptides seems to occur at a step common to all precursors since they blocked import of precursors to F1-ATPase alpha- and beta-subunits and the ADP/ATP carrier protein. Dissipation of membrane potential (delta psi) across the inner mitochondrial membrane is observed in the presence of F1 beta-peptides, but this mechanism alone does not account for the observed import inhibition. F1 beta 1-32 + 2 and 21-51 + 3 block import of pF1 beta 100% at peptide concentrations which dissipate delta psi less than 25%. In contrast, experiments with valinomycin demonstrate that when mitochondrial delta psi is reduced 25% import of pF1 beta is inhibited only 25%. Therefore, at least 75% of maximal import inhibition observed in the presence of F1 beta 1-32 + 2 and F1 beta 21-51 + 3 does not result from dissipation of delta psi. Import inhibition by F1 beta-peptides is reversible and can be overcome by increasing the amount of full-length precursor in import reactions. F1 beta presequence peptides and full-length precursor are therefore likely to compete for a common import step. Presequence dependent binding of pF1 beta to trypsin-sensitive elements on the outer mitochondrial membrane is insensitive to inhibitory concentrations of F1 beta presequence peptide. We conclude that import inhibition by F1 beta presequence peptides is competitive and occurs at a site beyond initial interaction of precursor proteins with mitochondria.  相似文献   

11.
Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a “ticket canceller” for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.  相似文献   

12.
We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.  相似文献   

13.
The obligate intracellular parasitic bacteria rickettsiae are more closely related to mitochondria than any other microbes investigated to date. A rickettsial putative peptidase (RPP) was found to resemble the alpha and beta subunits of mitochondrial processing peptidase (MPP), which cleaves the transport signal sequences of mitochondrial preproteins. RPP showed completely conserved zinc-binding and catalytic residues compared with beta-MPP but barely contained any of the glycine-rich loop region characteristic of alpha-MPP. When the biochemical activity of RPP purified from a recombinant source was analyzed, RPP specifically hydrolyzed basic peptides and presequence peptides with frequent cleavage at their MPP-processing sites. Moreover, RPP appeared to activate yeast beta-MPP so that it processed preproteins with shorter presequences. Thus, RPP behaves as a bifunctional protein that could act as a basic peptide peptidase and a somewhat regulatory protein for other protein activities in rickettsiae. These are the first biological and enzymological studies to report that a protein from a parasitic microorganism can cleave the signal sequences of proteins targeted to mitochondria.  相似文献   

14.
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re-inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility.  相似文献   

15.
Tryptophan fluorescence measurements were used to characterize the local dynamics of the highly conserved glycine-rich loop (GRL) of the mitochondrial processing peptidase (MPP) α-subunit in the presence of the substrate precursor. Reporter tryptophan residue was introduced into the GRL of the yeast α-MPP (Y299W) or at a proximal site (Y303W). Time-resolved and steady-state fluorescence spectroscopy demonstrated that for Trp299, the primary contact with the yeast malate dehydrogenase precursor evokes a change of the local GRL mobility. Moreover, time-resolved measurements showed that a functionless α-MPP with a single-residue deletion in the loop (Y303W/ΔG292) is defective particularly in the primary contact with substrate. Thus, the GRL was proved to be part of a contact site of the enzyme specifically recognizing the substrate. Regarding the surface exposure and presence of the hydrophobic patches within the GRL, we proposed a functional analogy between the presequence recognition by the hydrophobic binding groove of the Tom20 mitochondrial import receptor and the GRL of the α-MPP. A molecular dynamics (MD) simulation of the MPP-substrate peptide complex model was employed to test this hypothesis. The initial positioning and conformation of the substrate peptide in the model fitting were chosen based on the analogy of its interaction with the Tom20 binding groove. MD simulation confirmed the stability of the proposed interaction and showed also a decrease in GRL flexibility in the presence of substrate, in agreement with fluorescence measurements. Moreover, conserved substrate hydrophobic residues in positions + 1 and − 4 to the cleavage site remain in close contact with the side chains of the GRL during the entire production part of MD simulation as stabilizing points of the hydrophobic interaction. We conclude that the GRL of the MPP α-subunit is the crucial evolutional outcome of the presequence recognition by MPP and represents a functional parallel with Tom20 import receptor.  相似文献   

16.
17.
Mitochondrial processing peptidase (MPP), a dimer of nonidentical subunits, is the primary peptidase responsible for the removal of leader peptides from nuclearly encoded mitochondrial proteins. Alignments of the alpha and beta subunits of MPP (alpha- and beta-MPP) from different species show strong protein sequence similarity in certain regions, including a highly negatively charged region as well as a domain containing a putative metal ion binding site. In this report, we describe experiments in which we combine the subunits of MPP from yeast, rat, and Neurospora crassa, both in vivo and in vitro and mesure the resultant processing activity. For in vivo complementation, we used the temperature sensitive mif1 and mif2 yeast mutants, which lack MPP activity at the nonpermissive temperature (37 degrees C). We found that the defective alpha-MPP of mif2 cannot be substituted for by the alpha-MPP from rat or Neurospora. On the other hand, the beta-MPP from rat and Neurospora can fully substitute for the defective beta-MPP in the mif1 mutant. These results were confirmed in in vitro experiments in which individually expressed subunits were combined. Only combinations of the alpha-MPP from yeast with the beta-MPP from rat or Neurospora produced active MPP.  相似文献   

18.
19.
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.  相似文献   

20.
We recently demonstrated, using synthetic peptides modeled on the extension peptide of malate dehydrogenase, that amino acid residues present at the proximal and distal positions relative to the cleavage site are critical determinants for the recognition of substrates by mitochondrial processing peptidase [Niidome et al. (1994) J. Biol. Chem. 269, 24719-24722). While the proximal arginine is unexceptionally located at the -2 position, the position of the distal residue varies among mitochondrial precursor proteins. Between the proximal and distal residues, proline and/or glycine are present in most mitochondrial precursor proteins, and they are considered to play a role in the specific recognition of a substrate by the peptidase. To elucidate the role of the intervening portion, we introduced a non-natural amino acid [2-(2-aminoethoxy)acetic acid] between the distal and proximal residues. We also analyzed the functional elements in the proximal arginine by replacing the residue with various arginine or lysine analogs. The results of kinetic studies indicated that the intervening portion should be flexible for efficient processing, and that the guanidino group of the proximal arginine is recognized by the peptidase through hydrogen and ionic bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号