首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5 -/- mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5 -/- mice. By repeated intercrossing between Klk5 -/- mice with Spink5 -/- mice, we generated Spink5 -/- Klk5 -/- animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5 -/- Klk5 -/-. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5 -/- Klk5 -/- skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5 -/- skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.  相似文献   

2.
Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.  相似文献   

3.
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.  相似文献   

4.
LEKTI is a 15-domain serine proteinase inhibitor whose defective expression underlies the severe autosomal recessive ichthyosiform skin disease, Netherton syndrome. Here, we show that LEKTI is produced as a precursor rapidly cleaved by furin, generating a variety of single or multidomain LEKTI fragments secreted in cultured keratinocytes and in the epidermis. The identity of these biological fragments (D1, D5, D6, D8-D11, and D9-D15) was inferred from biochemical analysis, using a panel of LEKTI antibodies. The functional inhibitory capacity of each fragment was tested on a panel of serine proteases. All LEKTI fragments, except D1, showed specific and differential inhibition of human kallikreins 5, 7, and 14. The strongest inhibition was observed with D8-D11, toward KLK5. Kinetics analysis revealed that this interaction is rapid and irreversible, reflecting an extremely tight binding complex. We demonstrated that pH variations govern this interaction, leading to the release of active KLK5 from the complex at acidic pH. These results identify KLK5, a key actor of the desquamation process, as the major target of LEKTI. They disclose a new mechanism of skin homeostasis by which the epidermal pH gradient allows precisely regulated KLK5 activity and corneodesmosomal cleavage in the most superficial layers of the stratum corneum.  相似文献   

5.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   

6.
Netherton syndrome (NS) is a rare and debilitating severe autosomal recessive genetic skin disease with high mortality rates particularly in neonates. NS is caused by loss-of-function SPINK5 mutations leading to unregulated kallikrein 5 (KLK5) and kallikrein 7 (KLK7) activity. Furthermore, KLK5 inhibition has been proposed as a potential therapeutic treatment for NS. Identification of potent and selective KLK5 inhibitors would enable further exploration of the disease biology and could ultimately lead to a treatment for NS. This publication describes how fragmentation of known trypsin-like serine protease (TLSP) inhibitors resulted in the identification of a series of phenolic amidine-based KLK5 inhibitors 1. X-ray crystallography was used to find alternatives to the phenol interaction leading to identification of carbonyl analogues such as lactam 13 and benzimidazole 15. These reversible inhibitors, with selectivity over KLK1 (10–100 fold), provided novel starting points for the guided growth towards suitable tool molecules for the exploration of KLK5 biology.  相似文献   

7.
Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.  相似文献   

8.
Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage.  相似文献   

9.
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.  相似文献   

10.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

11.
Lympho-Epithelial Kazal-Type-related Inhibitor (LEKTI) has been demonstrated to be an inhibitor of various kallikreins and is thought to play a role in the regulation of skin desquamation. In order to identify and investigate the potential of LEKTI to interact with other proteins, a method was developed using immobilised proteins onto arrays and nanoUPLC/MALDI-TOF MS. Using various domains of LEKTI, we demonstrated that these domains bound a number of kallikreins (5, 13 and 14) to varied extents on the array surface. Inhibitory assays confirmed that binding on the protein array surface corresponded directly to levels of inhibition. The method was then tested using skin epidermal extracts. All forms of rLEKTI with the exception of rLEKTI 12-15, demonstrated the binding of several potential candidate proteins. Surprisingly, the major binding partners of LEKTI were found to be the antimicrobial peptide dermcidin and the serine protease cathepsin G and no kallikreins. Using confocal microscopy and Netherton syndrome skin sections, we confirmed the co-localisation of LEKTI with dermcidin and demonstrated altered trafficking of dermcidin in these patients. This potential new role for LEKTI as a multifunctional protein in the protection and transport of proteins in the epidermis and its role in disease are discussed.  相似文献   

12.
LEKTI is a 120-kDa protein that plays an important role in skin development, as mutations affecting LEKTI synthesis underlie Netherton syndrome, an inherited skin disorder producing severe scaling. Its primary sequence indicates that the protein consists of 15 domains, all resembling a Kazal-type serine protease inhibitor. LEKTI and two serine proteases belonging to the human tissue kallikrein (hK) family (hK5 and hK7) are expressed in the granular layer of skin. In this study, we characterize the interaction of two recombinant LEKTI fragments containing three or four intact Kazal domains (domains 6-8 and 9-12) with recombinant rhK5, a trypsin-like protease, and recombinant rhK7, a chymotrypsin-like protease. Both fragments inhibited rhK5 similarly in binding and kinetic studies performed at pH 8.0, as well as pH 5.0, the pH of the stratum corneum where both LEKTI and proteases may function. Inhibition equilibrium constants (Ki) measured either directly in concentration-dependent studies or calculated from measured association (kass) and dissociation (kdis) rate constants were 1.2-5.5 nM at pH 8.0 and 10-20 nM at pH 5.0. At pH 8.0, kass and kdis values were 4.7 x 10(5) M(-1) s(-1) and 5.5 x 10(-4) s(-1), and at pH 5.0 they were 4.0 x 10(4) M(-1) s(-1) and 4.3 x 10(-4) s(-1), respectively. The low Ki and kdis values (t1/2 of 20-25 min) indicate tight and specific association. Only fragment 6-9' was a good inhibitor of rhK7, demonstrating a Ki of 11 nM at pH 8.0 in a reaction that was rapidly reversible. These results show that LEKTI, at least in fragment form, is a potent inhibitor of rhK5 and that this protease may be a target of LEKTI in human skin.  相似文献   

13.
BackgroundOral squamous cell carcinoma (OSCC) remains a challenging cancer to treat despite all the advances of the last 50 years. Kallikrein 5 (KLK5) is among the serine proteases implicated in OSCC development. However, whether the activity of KLK5 promotes carcinogenesis is still controversial. Moreover, knowledge regarding the role of the KLK5 cognate inhibitor, Lympho-Epithelial Kazal-Type related Inhibitor (LEKTI), in OSCC is scarce. We have, thus, sought to investigate the importance of KLK5 and LEKTI expression in premalignant and malignant lesions of the oral cavity.MethodsKLK5 and LEKTI protein expression was evaluated in 301 human samples, which were comprised of non-malignant and malignant lesions of the oral cavity. Moreover, a bioinformatic analysis of the overall survival rate from 517 head and neck squamous cell carcinoma (HNSCC) samples was performed. Additionally, to mimic the uncovered KLK5 to serine peptidase inhibitor (SPINK5) imbalance, the KLK5 gene was abrogated in an OSCC cell line using CRISPR-Cas9 technology. The generated cell line was then used for in vivo and in vitro carcinogenesis related experiments.ResultsLEKTI was found to be statistically downregulated in OSCCs, with increased KLK5/SPINK5 mRNA ratio being associated with a shorter overall survival (p=0.091). Indeed, disruption of KLK5 to SPINK5 balance through the generation of KLK5 null OSCC cells led to smaller xenografted tumors and statistically decreased proliferation rates following multiple time points of BrdU treatment in vitro.ConclusionThe association of increased enzyme/inhibitor ratio with poor prognosis indicates KLK5 to SPINK5 relative expression as an important prognostic marker in OSCC.  相似文献   

14.
We have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity. This was in spite of very low levels of KLK14 protein compared to KLK5 and KLK7. KLK14 could be detected by immunoblotting in normal superficial stratum corneum of all individuals examined. The majority of KLK14 in the plantar stratum corneum is present in its catalytically active form. KLK14 could be immunohistochemically detected in sweat ducts, preferentially in the intraepidermal parts (the acrosyringium), and in sweat glands. The role played by this very efficient protease under normal and disease conditions in the skin remains to be elucidated.  相似文献   

15.
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.  相似文献   

16.
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.  相似文献   

17.
The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.  相似文献   

18.
Human airway trypsin-like protease (HAT), a serine protease found in the sputum of patients with chronic airway diseases, is an agonist of protease-activated receptor-2 (PAR-2). Previous results have shown that HAT enhances the release of amphiregulin (AR); further, it causes MUC5AC gene expression through the AR-epidermal growth factor receptor pathway in the airway epithelial cell line NCI-H292. In this study, the mechanisms by which HAT-induced AR release can occur were investigated. HAT-induced AR gene expression was mediated by extracellular signal-regulated kinase (ERK) pathway, as pretreatment of cells with ERK pathway inhibitor eliminated the effect of HAT on AR mRNA. Both HAT and PAR-2 agonist peptide (PAR-2 AP) induced ERK phosphorylation; further, desensitization of PAR-2 with a brief exposure of cells to PAR-2 AP resulted in inhibition of HAT-induced ERK phosphorylation, suggesting that HAT activates ERK through PAR-2. Moreover, PAR-2 AP induced AR gene expression subsequent to protein production in the cellular fraction through the ERK pathway indicating that PAR-2-mediated activation of ERK is essential for HAT-induced AR production. However, in contrast to HAT, PAR-2 AP could not cause AR release into extracellular space; it appears that activation of PAR-2 is not sufficient for HAT-induced AR release. Finally, HAT-induced AR release was eliminated by blockade of tumour necrosis factor alpha-converting enzyme (TACE) by the TAPI-1 and RNA interference, suggesting that TACE activity is necessary for HAT-induced AR release. These observations show that HAT induces AR production through the PAR-2 mediated ERK pathway, and then causes AR release by a TACE-dependent mechanism.  相似文献   

19.
Gan L  Lee I  Smith R  Argonza-Barrett R  Lei H  McCuaig J  Moss P  Paeper B  Wang K 《Gene》2000,257(1):119-130
The human kallikrein gene cluster, located in the chromosome band 19q13, contains several tissue-specific serine protease genes including the prostate-specific KLK2, KLK3 and prostase genes. To further characterize the gene cluster, we have mapped, sequenced, and analyzed the genomic sequence from the region. The results of EST database searches and GENSCAN gene prediction analysis reveal 13 serine protease genes and several pseudogenes in the region. Expression analysis by RT-PCR indicates that most of these protease genes are expressed only in a subset of the 35 different normal tissues that have been examined. Several protease genes expressed in skin show higher expression levels in psoriatic lesion samples than in non-lesional skin samples from the same patient. This suggests that the imbalance of a complex protease cascade in skin may contribute to the pathology of disease. The proteases, excluding the kallikrein genes, share approximately 40% of their sequences suggesting that the serine protease gene cluster on chromosome 19q13 arose from ancient gene duplications.  相似文献   

20.
Hepatocyte growth factor activator (HGFA) is a serine protease and a potent activator of prohepatocyte growth factor/scatter factor (pro-HGF/SF), a multifunctional growth factor that is critically involved in tissue morphogenesis, regeneration, and tumor progression. HGFA circulates as a zymogen (pro-HGFA) and is activated in response to tissue injury. Although thrombin is considered to be an activator of pro-HGFA, alternative pro-HGFA activation pathways in tumor microenvironments remain to be identified. In this study, we examined the effects of kallikrein 1-related peptidases (KLKs), a family of extracellular serine proteases, on the activation of pro-HGFA. Among the KLKs examined (KLK2, KLK3, KLK4 and KLK5), we identified KLK4 and KLK5 as novel activators of pro-HGFA. Using N-terminal sequencing, the cleavage site was identified as the normal processing site, Arg407-Ile408. The activation of pro-HGFA by KLK5 required a negatively charged substance such as dextran sulfate, whereas KLK4 could process pro-HGFA without dextran sulfate. KLK5 showed more efficient pro-HGFA processing than KLK4, and was expressed in 50% (13/25) of the tumor cell lines examined. HGFA processed by these KLKs efficiently activated pro-HGF/SF, and led to cellular scattering and invasion in vitro. The activities of both KLK4 and KLK5 were strongly inhibited by HGFA inhibitor type 1, an integral membrane Kunitz-type serine protease inhibitor that inhibits HGFA and other pro-HGF/SF-activating proteases. These data suggest that KLK4 and KLK5 mediate HGFA-induced activation of pro-HGF/SF within tumor tissue, which may thereafter trigger a series of events leading to tumor progression via the MET receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号