首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malaysian rice, Pongsu Seribu 2, has wide-spectrum resistance against blast disease. Chromosomal locations conferring quantitative resistance were detected by linkage mapping with SSRs and quantitative trait locus (QTL) analysis. For the mapping population, 188 F3 families were derived from a cross between the susceptible cultivar, Mahsuri, and a resistant variety, Pongsu Seribu 2. Partial resistance to leaf blast in the mapping population was assessed. A linkage map covering ten chromosomes and consisting of 63 SSR markers was constructed. 13 QTLs, including 6 putative and 7 putative QTLs, were detected on chromosomes 1, 2, 3, 5, 6, 10, 11 and 12. The resulting phenotypic variation due to a single QTL ranged from 2 to 13 %. These QTLs accounted for approx. 80 % of the total phenotypic variation within the F3 population. Therefore, partial resistance to blast in Pongsu Seribu 2 is due to combined effects of multiple loci with major and minor effects.  相似文献   

2.
Blast caused by the fungus Magnaporthae grisea (Herbert) Borr. (anamorphe Pyricularia oryza Cav.) is a serious disease of rice (Oryza sativa L.). One method to overcome this disease is to develop disease resistant cultivars. Due to the genetic plasticity in the pathogen genome, there is a continuous threat to the effectiveness of the developed cultivars. Additional studies of the genetics of resistance, virulence stability and functional genomics are required to accelerate research into understanding the molecular basis of blast disease resistance. In this study, individual plants of the F3 population derived from Pongsu Seribu 2 and Mahsuri were used for pathogenesis assays and inheritance studies of blast resistance. The study was performed with two of the most virulent Malaysian M. grisea pathotypes: P7.2 and P5.0. For blast screening, plants were scored based on the IRRI Standard Evaluation System (SES). F3 populations showed a segregation ratio of 3R:1S for pathotype P7.2, indicating that resistance to this pathotype is likely controlled by a single nuclear gene. Chi‐square analysis showed that the F3 families segregated in a 15R:1S ratio for pathotype P5.0. Therefore, locus interactions or epitasis of blast resistance occur against pathotype P5.0 in the F3 population derived from Pongsu Seribu 2 and Mahsuri. This can be explained by the presence of two independent dominant genes that when present simultaneously, provide resistance to the M. gresia pathotype P5.0. These results indicated that blast resistance in rice is due to the combined effects of multiple loci with major and minor effects. The genetic data generated here will be useful in the breeding of local cultivars for resistance to field blast. The methodology reported here will facilitate the mapping of genes and quantitative trait loci (QTLs) underlying the blast resistance trait.  相似文献   

3.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

4.
Rice blast caused by the fungus Magnaporthe oryzae is one of the most devastating diseases of rice in nearly all rice growing areas of the world including Malaysia. To develop cultivars with resistance against different races of M. oryzae, availability of molecular markers along with marker-assisted selection strategies are essential. In this study, 11 polymorphic simple sequence repeat (SSR) markers with good fit of 1:2:1 ratio for single gene model in F2 population derived from the cross of Pongsu seribu 2 (Resistant) and Mahsuri (Susceptible) rice cultivars were analysed in 296 F3 families derived from individual F2 plants to investigate association with Pi gene conferring resistance to M. oryzae pathotype. Parents and progeny were grouped into two phenotypic classes based on their blast reactions. Chi-square test for the segregation of resistance and susceptibility in F3 generation fitted a ratio of approximately 3:1. Association of SSR markers with phenotypic trait in F3 families was identified by statistical analysis. Four SSR markers (RM413, RM5961, RM1233 and RM8225) were significantly associated with blast resistance to pathotype 7.2 of M. oryzae in rice (p ≤ 0.01). These four markers accounted for about 20% of total phenotypic variation. So, these markers were confirmed as suitable markers for use in marker-assisted selection and confirmation of blast resistance genes to develop rice cultivars with durable blast resistance in Malaysian rice breeding programmes.  相似文献   

5.
The detection of quantitative trait loci (QTLs) associated with UV-B resistance in rice should allow their practical application in breeding for such a complex trait, and may lead to the identification of gene characteristics and functions. Considerable variation in UV-B resistance exists within cultivated rice (Oryza sativa L.), but its detailed genetic control mechanism has not been well elucidated. We detected putative QTLs associated with the resistance to enhanced UV-B radiation in rice, using 98 BC1F5 (backcross inbred lines; BILs) derived from a cross between Nipponbare (a resistant japonica rice variety) and Kasalath (a sensitive indica rice variety). We used 245 RFLP markers to construct a framework linkage map. BILs and both parents were grown under visible light with or without supplemental UV-B radiation in a growth chamber. In order to evaluate UV-B resistance, we used the relative fresh weight of aerial parts (RFW) and the relative chlorophyll content of leaf blades (RCC). The BIL population exhibited a wide range of variation in RFW and RCC. Using composite interval mapping with a LOD threshold of 2.9, three putative QTLs associated with both RFW and RCC were detected on chromosomes 1, 3 and 10. Nipponbare alleles at the QTLs on chromosome 1 and 10 increased the RFW and RCC, while the Kasalath allele at the QTL on chromosome 3 increased both traits. Furthermore, the existence of both QTLs on chromosomes 1 and 10 for UV-B resistance was confirmed using chromosome segment substitution lines. Plants with Kasalath alleles at the QTL on chromosome 10 were more sensitive to UV-B radiation than plants with them on chromosome 1. These results also provide the information not only for the improvement of UV-B resistance in rice though marker-associated selection, but also for the identification of UV-B resistance mechanisms by using near-isogenic lines.Communicated by D.J. Mackill  相似文献   

6.
Identification of quantitative trait loci (QTLs) controlling yield and yield-related traits in rice was performed in the F2 mapping population derived from parental rice genotypes DHMAS and K343. A total of 30 QTLs governing nine different traits were identified using the composite interval mapping (CIM) method. Four QTLs were mapped for number of tillers per plant on chromosomes 1 (2 QTLs), 2 and 3; three QTLs for panicle number per plant on chromosomes 1 (2 QTLs) and 3; four QTLs for plant height on chromosomes 2, 4, 5 and 6; one QTL for spikelet density on chromosome 5; four QTLs for spikelet fertility percentage (SFP) on chromosomes 2, 3 and 5 (2 QTLs); two QTLs for grain length on chromosomes 1 and 8; three QTLs for grain width on chromosomes1, 3 and 8; three QTLs for 1000-grain weight (TGW) on chromosomes 1, 4 and 8 and six QTLs for yield per plant (YPP) on chromosomes 2 (3 QTLs), 4, 6 and 8. Most of the QTLs were detected on chromosome 2, so further studies on chromosome 2 could help unlock some new chapters of QTL for this cross of rice variety. Identified QTLs elucidating high phenotypic variance can be used for marker-assisted selection (MAS) breeding. Further, the exploitation of information regarding molecular markers tightly linked to QTLs governing these traits will facilitate future crop improvement strategies in rice.  相似文献   

7.
Sorghum downy mildew (SDM), caused by obligate biotrophic fungi Peronosclerospora sorghi, is an economically important disease of maize. The genetics of resistance was reported to be polygenic thereby necessitating identification of QTLs for resistance to SDM to initiate effective marker-assisted selection programs. During post-rainy and winter season of 2012, 645 F2:3 progeny families from the cross CML153 (susceptible) × CML226 (resistant) were screened for their reaction to SDM. Characterization of QTLs affecting resistance to SDM was undertaken using the genetic linkage map with 319 polymorphic SSR and SNP marker loci and the phenotypic data of F2:3 families. Three QTLs conferring resistance to SDM were consistently identified on chromosomes 2, 3 and 6 in both seasons. The resistant parent CML226 contributed all the QTL alleles conferring resistance to SDM. The major QTL located on chromosome 2 explained 38.68% of total phenotypic variation in the combined analysis with a LOD score of 9.12. All the three QTL showed partially dominant gene effects in combined analysis. The detection of more than one QTL supports the hypothesis that quantitative genes control resistance to P. sorghi. The generation was advanced to F6 using markers linked to major QTLs on chromosomes 2 and 3 to derive 33 SDM resistant maize inbred lines.  相似文献   

8.
To detect QTLs controlling traits of agronomic importance in rice, two elite homozygous lines 9024 and LH422, which represent the indica and japonica subspecies of rice (Oryza sativa), were crossed. Subsequently a modified single-seed-descent procedure was employed to produce 194 recombinant inbred lines (F8). The 194 lines were genotyped at 141 RFLP marker loci and evaluated in a field trial for 13 quantitative traits including grain yield. Transgressive segregants were observed for all traits examined. The number of significant QTLs (LOD 2.0) detected affecting each trait ranged from one to six. The percentage of phenotypic variance explained by each QTL ranged from 5.1% to 73.7%. For those traits for which two or more QTLs were detected, increases in the traits were conditioned by indica alleles at some QTLs Japonica alleles at others. No significant evidence was found for epistasis between markers associated with QTLs and all the other markers. Pleitropic effects of single QTLs on different traits are suggested by the observation of clustering of QTLs. No QTL for traits was found to map to the vicinity of major gene loci governing the same traits qualitatively. Evidence for putative orthologous QTLs across rice, maize, oat, and barley is discussed.  相似文献   

9.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

10.
Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of vegetable Brassica crops in the world. In this study, genetic control and mapping of loci implied in quantitative resistance against five isolates of P. brassicae were studied in the F1 and F2/3 progenies of the cross C10 (resistant kale)×HDEM (susceptible broccoli). A genetic map was constructed using RFLP, random and specific PCR-based markers. The 199 loci were assembled into nine linkage groups covering 1,226.3 cM. The F3 families were assessed for resistance under controlled conditions with four single-spore isolates and one field isolate. A total of nine genomic regions were detected for clubroot resistance. Depending on the isolate, two to five QTLs were identified. The total phenotypic variation accounted for by QTLs ranged from 70% to 88% depending on the isolate. One of the QTLs (Pb-Bo1) was detected in all isolates and explained 20.7–80.7% of the phenotypic variation. Pb-Bo1 had a major effect on three isolates but this effect was weaker for the last two. Five QTLs with minor effect were identified in only one isolate. To construct clubroot resistant varieties, the existence of both broad-spectrum and isolate-specific QTLs should be taken into account for the choice of genomic regions to use in a marker-assisted selection strategy.Communicated by C. Möllers  相似文献   

11.
Rice (Oryza sativa L.) is seriously impacted by global soil salinization. To determine the quantitative trait loci (QTLs) related to salt tolerance in rice roots, F2:3 and BC1F2:3 populations derived from a cross between the cv. Dongnong 425 of high quality and yield and the salt-tolerant cv. Changbai 10, were studied at different development stages. Two genetic linkage maps of F2:3 and BC1F2:3 populations were constructed. A 66 mM NaCl solution was used to irrigate the field and to analyze the dynamic QTL of some rice root traits. Using unconditional and conditional QTL mapping methods, 30 unconditional QTLs and 16 conditional QTLs related to the 6 root traits were detected on the 9 rice chromosomes during different developmental stages. Fourteen pairs of unconditional and conditional QTLs were detected at the identical developmental stage in the identical population. A number of QTLs were detected at different developmental stages, however, many did not appear at the last stage. Remarkably, qRKC1 appeared continuously at multiple stages in both the populations suggesting its key role in regulating the salt tolerance of rice roots.  相似文献   

12.
Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize   总被引:3,自引:0,他引:3  
 Cultivars with quantitative resistance are widely used to control Setosphaeria turcica (Luttrell) Leonard & Suggs, the causal organism of northern corn leaf blight (NCLB). Here the effectiveness of quantitative trait loci (QTLs) for NCLB resistance was investigated over the course of host plant development in inoculated field trials. A population of 194–256 F2:3 lines derived from a cross between a susceptible Italian (Lo951) and a highly resistant African inbred line (CML202) was tested in three environments in Kenya. The traits assessed were the incubation period (IP), the percentage disease severity (DS 1 to 5, taken biweekly), and the area under the disease progress curve (AUDPC). Considering all resistance traits and environments, a total of 19 putative QTLs were detected by composite interval mapping using a linkage map with 110 RFLP markers. In the combined analysis across environments, nine QTLs were significant (LOD >3.0) for DS 3, recorded around flowering time, explaining 71% of the genotypic variance. Four of these nine QTLs displayed significant (P<0.05) QTL×environment (QTL×E) interaction. Most QTLs were already significant in the juvenile stage (IP) and became less effective after flowering. Across environments, three QTLs conditioned adult-plant resistance, in the sense that they were only significant after flowering. Six QTL alleles on chromosomes 2, 4, 5, 8, and 9 of CML202 should be useful for marker-assisted backcrossing. Received: 24 August 1998 / Accepted: 29 September 1998  相似文献   

13.
Quantitative trait loci (QTLs) for resistance to the fungal pathogen Setosphaeria turcica, the cause of northern corn leaf blight (NCLB), were mapped in a population of 220 F3 families derived from a cross between two moderately resistant European inbred lines, D32 (dent) and D145 (flint). The population was genotyped with 87 RFLP and 7 SSR markers. Trials were conducted in the field in Switzerland, and in the greenhouse with selected F3 families in Germany. The F3 population segregated widely for resistance with transgression of the parents. By composite interval mapping, a total of 13 QTLs were detected with two disease ratings (0 and 3 weeks after flowering). Together these QTLs explained 48% and 62% of the phenotypic variation. Gene action at most QTLs was partially dominant. Eight out of the 13 QTL alleles for resistance were contributed by the more-resistant parent, D145. On chromosomes 3, 5 and 8, QTLs were located in the same chromosomal regions as QTLs in tropical and U.S. Corn Belt germplasm. Some QTLs affected NCLB, head smut and common rust at the same time, with alleles at these loci acting isodirectionally. Received: 25 January 1999 / Accepted: 20 Februar 1999  相似文献   

14.
Drought is a major limitation for rice production in rainfed ecosystems. Identifying quantitative trait loci (QTLs) linked to drought resistance provides opportunity to breed high yielding rice varieties suitable for drought-prone areas. Although considerable efforts were made in mapping QTLs associated with drought-resistance traits in rice, most of the studies involved indica × japonica crosses and hence, the drought-resistance alleles were contributed mostly by japonica ecotypes. It is desirable to look for genetic variation within indica ecotypes adapted to target environment (TE) as the alleles from japonica ecotype may not be expressed under lowland conditions. A subset of 250 recombinant inbred lines (RILs) of F8 generation derived from two indica rice lines (IR20 and Nootripathu) with contrasting drought-resistance traits were used to map the QTLs for morpho-physiological and plant production traits under drought stress in the field in TE. A genetic linkage map was constructed using 101 polymorphic PCR-based markers distributed over the 12 chromosomes covering a total length of 1,529 cM in 17 linkage groups with an average distance of 15.1 cM. Composite interval mapping analysis identified 22 QTLs, which individually explained 4.8–32.2% of the phenotypic variation. Consistent QTLs for drought-resistance traits were detected using locally adapted indica ecotypes, which may be useful for rainfed rice improvement.  相似文献   

15.
A backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with 14 traits in a BC2F2 population derived from a cross between MR219, an indica rice cultivar and an accession of Oryza rufipogon (IRGC 105491). A total of 261 lines were genotyped with 96 microsatellite markers and evaluated for plant morphology, yield components and growth period. The genetic linkage map generated for this population with an average interval size of 16.2?cM, spanning 1,553.4?cM (Kosambi) of the rice genome. Thirty-eight QTLs were identified with composite interval mapping (CIM), whereas simple interval mapping (SIM) resulted in 47 QTLs (LOD >3.0). The O. rufipogon allele was favourable for 59% of QTLs detected through CIM. Of 261 BC2F2 families, 26 advanced backcross breeding lines (BC2F5) were used for QTL validation. These lines were selected on the basis of the yield traits potentiality in BC2F3 and BC2F4 generations. The field trial was conducted at three different locations in Malaysia using randomized complete block design with three replications. Trait based marker analysis was done for QTL determination. Twenty-five QTLs were detected in BC2F5 generation whereas 29 QTLs were detected in BC2F2 generation of the same population. Two QTLs (qPL-1 and qSPL-7) were not considered for validation due to their low R 2 values and two QTLs (qPSS-3-2 and qGW-3-2) were not detected in the BC2F5 population. Fifteen QTLs showed the beneficial effect to enhance the trait value of the breeding lines. QTL validation aided to select the promising lines for further utilization.  相似文献   

16.
Drought is a major abiotic stress of upland rice, and good root growth has been associated with drought avoidance. We report on the genetic mapping of root growth traits in an F2 population derived from two drought-resistant rice varieties, ‘Bala’ and ‘Azucena’. Restriction fragment length polymorphism (RFLP) between the parents was 32%, and a molecular map with 71 marker loci and 17 linkage groups covering 1280 cM was produced. Quantitative trait loci (QTLs) for eight root growth characteristics were mapped using phenotype data obtained in a hydroponic screen previously described in a companion paper. Using a significance threshold of LOD 2.4, we observed one QTL for maximum root length after 28 days growth on chromosome 11. It had a LOD score of 6.9, explained nearly 30% of the variation and appeared to be largely additive in effect. QTLs for maximum root length after 3, 7, 14 and 21 days of growth were also revealed. Some root-length QTLs, including that on chromosome 11, varied greatly with developmental stage. One QTL for root volume and two QTLs for adventitious root thickness were detected. No QTLs were detected for the length of cells in the mature (fully expanded) zone of adventitious root tips. The results obtained are discussed in the context of previous reports on mapping root growth parameters in rice.  相似文献   

17.
Moroberekan, a japonica rice cultivar with durable resistance to blast disease in Asia, was crossed to the highly susceptible indica cultivar, CO39, and 281 F(7) recombinant inbred (RI) lines were produced by single seed descent. The population was evaluated for blast resistance in the greenhouse and the field, and was analyzed with 127 restriction fragment length polymorphism (RFLP) markers. Two dominant loci associated with qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and Pi-7(t). They were mapped on chromosomes 4 and 11, respectively. To identify quantitative trait loci (QTLs) affecting partial resistance, RI lines were inoculated with isolate PO6-6 of Pyricularia oryzae in polycyclic tests. Ten chromosomal segments were found to be associated with effects on lesion number (P < 0.0001 and LOD > 6.0). Three of the markers associated with QTLs for partial resistance had been reported to be linked to complete blast resistance in previous studies. QTLs identified in greenhouse tests were good predictors of blast resistance at two field sites. This study illustrates the usefulness of RI lines for mapping a complex trait such as blast resistance and suggests that durable resistance in the traditional variety, Moroberekan, involves a complex of genes associated with both partial and complete resistance.  相似文献   

18.
Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.  相似文献   

19.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

20.
Rice sheath blight, caused by Rhizoctonia solani Kühn, is one of the three major diseases of rice. The present study was conducted with an F2 clonal population of Jasmine 85/Lemont. The F2 population, including 128 clonal families, was inoculated by short toothpicks incubated with a strain, RH-9 of the fungus. Based on field disease evaluations in 2 years and a genetic map with 118 evenly distributed molecular markers, we identified six quantitative trait loci (QTLs) contributing to sheath blight resistance. These QTLs, qSB-2, qSB-3, qSB-7, qSB-9-1, qSB-9-2 and qSB-11, were located on chromosomes 2, 3, 7, 9 and 11, respectively. The respective alleles of qSB-2, qSB-3, qSB-7, and qSB-9-2 from Jasmine 85 could explain 21.2%, 26.5%, 22.2% and 10.1% of the total phenotypic variation, respectively; while the alleles of qSB-9-1 and qSB-11 from Lemont could explain 9.8% and 31.2% of the total phenotypic variation. Of these qSB-2 and qSB-11 could be detected in both years, while remaining loci were detected only in a single year. Furthermore, four QTLs (qHD-2, qHD-3, qHD-5 and qHD-7) controlling heading date and three QTLs (qPH-3, qPH-4 and qPH-11) controlling plant height were also identified. Though rice sheath blight resistance may be influenced by morphological traits, such as heading date and plant height, in the present study most detected resistance loci were not linked to the loci for heading date or plant height. Received: 1 September 1999 / Accepted: 24 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号