首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu H  Zhao YL  Jiang XN 《Biotechnology letters》2004,26(14):1147-1152
The ability of 4-coumarate:coenzyme A ligase promoter from Populus tomentosa (Pto4CL1p) to drive expression of the GUS reporter gene and 4-coumarate:coenzyme A ligase gene in tobacco has been studied using transgenic plants produced by Agrobacterium-mediated transformation. Intense GUS histochemical staining was detected in the xylem of stem in transgenic tobacco plants carrying the 1140 bp Pto4CL1p promoter. To further investigate the regulation function of the tissue-specific expression promoter, Pto4CL1p, a binary vector containing Pto4CL1p promoter fused with 4CL1 gene was transferred into tobacco. The activity of the 4CL1 enzyme doubled in the stems of transgenic tobacco but did not increase in the leaves. The content of lignin was increased 25% in the stem but there was no increase in the leaves of transgenic tobacco.  相似文献   

2.
The most important enzyme of the phenylpropanoid pathway, 4-coumarate:coenzyme A ligase (4CL), is encoded by several homologous genes including 4CL1. The 4CL1 promoter is a tissue-specific gene expression element, particularly active in the secondary xylem or older stems. In this study, the 1127 bp 5′- upstream region of the 4CL1 coding sequence from Eucalyptus camaldulensis, Euc4CL1, was isolated and characterized. Essential putative cis-elements in the Euc4CL1 promoter included: a TATA-box at ?22/?28 position, two CCAAT-boxes at ?256/?260 and ?277/?281 positions, respectively, an AC-element at ?328/?336 and A-boxes at ?115/?120 and ?990/?995 positions. To investigate the effect of the Euc4CL1 promoter on gene expression, a plant transformation vector, pEuc4CL1p, containing the reporter gene for β-glucuronidase (GUS) under the control of Euc4CL1 promoter was constructed based on the pBI101 backbone and introduced in tobacco plants. Stable expression of the GUS gene in transgenic lines was analysed by a histochemical GUS assay. The results indicated the specific expression of the GUS gene in the stem xylem cells of transgenic tobacco lines was controlled by the Euc4CL1 promoter. The observations suggest the isolated Euc4CL1 promoter is a potential candidate for driving the expression of a foreign gene in plant xylem tissues.  相似文献   

3.
We characterized promoter activity of a phenylpropanoid biosynthetic gene encoding 4-coumarate Co-A ligase (4CL), Pta4Clα, from Pinus taeda. Histochemical- and quantitative assays of GUS expression in the vascular tissue were performed using transgenic tobacco plants expressing promoter-GUS reporters. Deletion analysis of the Pta4Clα promoter showed that the region ?524 to ?252, which has two AC elements, controls the high expression levels in ray-parenchyma cells of older tobacco stems. High activity level of the promoter domain of Pta4CLα was also detected in the xylem cells under bending stress. DNA-protein complexes were detected in the reactions of the Pta4CLα promoter fragments with the nuclear proteins of xylem of P. taeda. The AC elements in the Pta4CLα promoter appeared to have individual roles during xylem development that are activated in a coordinated manner in response to stress in transgenic tobacco.  相似文献   

4.
In our previous research, we showed that the cyclin-dependent kinase regulatory subunit (CKS2) in maize (Zea mays L.) was induced by water deficit and cold stress. To elucidate its expression patterns under adversity, we isolated and characterized its promoter (PZmCKS2). A series of PZmCKS2-deletion derivatives, P0–P3, from the translation start code (?1,455, ?999, ?367, and ?3 bp) was fused to the β-glucuronidase (GUS) reporter gene, and each deletion construct was analyzed by Agrobacterium-mediated steady transformation into Arabidopsis. Leaves were then subjected to dehydration, cold, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA). Sequence analysis showed that several stress-related cis-acting elements (MBS, CE3, TGA element, and ABRE) were located within the promoter. Deletion analysis of the promoter, PZmCKS2, suggested that the ?999 bp promoter region was required for the highest basal expression of GUS, and the ?367 bp sequence was the minimal promoter for ZmCKS2 activation by low temperature, ABA, and MeJA. The cis-acting element ABRE was necessary for promoter activation by exogenous ABA.  相似文献   

5.
6.
To investigate developmental regulation of wheat histone H3 gene expression, the H3 promoter, which has its upstream sequence to ?1711 (relative to the cap site as +1), was fused to the coding region of the gus A gene (?1711H3/GUS) and introduced into a monocot plant, rice. Detailed histochemical analysis revealed two distinct types of GUS expression in transgenic rice plants; one is cell division-dependent found in the apical meristem of shoots and roots and in young leaves, and another is cell division-independent detected in flower tissues including the anther wall and the pistil. In this study, replication-dependent expression occurring in non-dividing cells which undergo endoreduplication could not be discriminated from strict replication-independent expression. The observed expression pattern in different parts of roots suggested that the level of the H3/GUS gene expression is well correlated with activity of cell division in roots. To identify 5′ sequences of the H3 promoter necessary for an accurate regulation of the GUS expression, two constructs containing truncated promoters, ?908H3/GUS and ?185H3/GUS, were analyzed in transiently expressed protoplasts, stably transformed calli and transgenic plants. The results indicated that the region from ?909 to ?1711 contains the positive cis-acting element(s) and that the proximal promoter region (up to ?185) containing the conserved hexamer, octamer and nonamer motifs is sufficient to direct both cell division-dependent and -independent expression. The use of the meristem of roots regenerated from transformed calli for the analysis of cell division-dependent expression of plant genes is discussed.  相似文献   

7.
8.
9.
10.
The enzyme 4-coumarate:coenzyme A ligase (4CL) plays an important role in phenylpropanoid metabolism. The 5′-upstream regions of two Sm4CL genes were isolated from danshen (Salvia miltiorrhiza Bunge) and their functions were characterized by promoter-directed GUS gene expression assay in transgenic Arabidopsis. Seedlings containing pSm4CL1 promoter:GUS fusions showed apparent GUS staining in hypocotyl and those harboring pSm4CL2 promoter:GUS fusions were clearly stained in cotyledon vasculars and roots. Mature Arabidopsis transformed with pSm4CL1 promoter:GUS exhibited GUS expression which was weak in the shoots and scarcely in roots and those modified with pSm4CL2 promoter:GUS displayed obvious GUS staining in roots, stigmatic papillae, stamens and sepal veins. Semi-quantitative RT-PCR revealed that Sm4CL2 was transcribed at the highest level in roots which was also shown to be the major accumulation site of salvianolic acid B. The results suggested that Sm4CL2 rather than Sm4CL1 might be responsible for the biosynthesis of salvianolic acid B in danshen roots.  相似文献   

11.
12.
Lignin is a complex aromatic polymer of vascular plants that provides mechanical strength to the stem and protects cellulose fibres from chemical and biological degradation. 4-Coumarate:CoA ligases (EC 6.2.1.12) are key enzymes for the biosynthetic pathway of monolignols which is an important complex aromatic polymer for lignin biosynthesis and tree growth. Recently, 4-coumarate:CoA ligase has been used as exogenous gene in transgenic plants to genetically modify the lignin biosynthesis pathway. Since most lignin is produced in the vascular cells, a tissue-specific-expressed promoter in the vascular cell would be important and useful to change and modify the content of lignin. Here we report the existence of a promoter of GRP1.8 (the glycine-rich protein 1.8) in Sopho japonica L. (GenBank accession number AF250149) and studies on its function in transgenic tobacco. The promoter activity was analyzed in transgenic tobacco plants by histochemical staining of GUS gene expression driven by a 613-bp sjGRP1.8p promoter sequence. In sjGRP1.8p-GUS transgenic plants, intense GUS staining was detected in the xylem of the stem. To further investigate the regulation of the tissue-specific expression of the 4CL1 gene, we analyzed the activity of the 4CL1 gene which is sense orientated with the sjGRP1.8p promoter in transgenic tobacco. The Pto4CL1 gene was expressed in the stem of transgenic tobacco. The activity of the 4CL1 enzyme was increased 1–2-fold in the stem but not increased in the leaves of transgenic tobacco. In comparison with the control plants, the content of lignin was increased 25% in the stem but there was no increase in the leaves of transgenic tobacco.  相似文献   

13.
The promoter region (?309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5′ as well as internal deletions fused to the reporter gene GUS (β-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between ?309 to ?152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position ?152 to position ?144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region ?133 to ?120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.  相似文献   

14.
15.
16.
17.
18.
To obtain strong inducible promoters to drive abiotic stress-inducible transgene expression with minimal negative effects, we constructed three artificial synthetic promoters (EKCM, EKCRM, and ECCRM) comprising multiple cis-acting stress-response elements. Each promoter was fused independently to the β-glucuronidase (GUS) reporter gene, and GUS expression was analyzed in stable expression systems in Arabidopsis thaliana. T2 transgenic progenies showed integration of the promoter-GUS construct in their genome. RT-PCR assays and histochemical staining analysis showed that GUS expression driven by each promoter increased under desiccation, cold, and high salt conditions. The activity of synthetic promoters, assessed by fluorometric quantitative analysis of GUS enzyme activity, was significantly higher than that of the rd29A promoter under various stress treatments. The most powerful promoter, EKCM, allowed about 1.29-fold in GUS activity relative to the rd29A promoter, on average, under dehydration conditions. All three synthetic promoters could drive stress-inducible GUS expression in different organs of transgenic Arabidopsis. These synthetic promoters represent valuable tools for improving the stress tolerance of crops.  相似文献   

19.
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) plays a key role in linking general phenylpropanoid metabolism to end-product specific biosynthetic pathways. During vascular system and floral organ differentiation, the parsley 4CL-1 gene is expressed in a restricted set of tissues and cell types where 4CL activity is required to supply precursors for the synthesis of diverse phenylpropanoid-derived products such as lignin and flavonoids. In order to localize cis -acting elements which specify complex patterns of 4CL-1 expression, we analyzed the expression of internally deleted promoter fragment— GUS fusions in tobacco plants and parsley protoplasts. Elements located between −244 and −78 were required for most aspects of developmentally regulated expression. Within this region, three separate promoter domains containing partially redundant cis -elements directed vascular-specific expression when combined with a TATA-proximal domain. A negative cis -acting element which represses phloem expression was revealed in one of the domains and appears to be responsible for restricting vascular expression to the xylem. Distinct but overlapping promoter domain combinations were required for expression in floral organs, suggesting that different combinations of cis -acting elements may direct expression in different organs. Gel retardation assays were used to demonstrate the formation of DNA-protein complexes between factors present in nuclear extracts of parsley tissue culture cells and various tobacco organs and a 4CL-1 promoter fragment. Competition experiments showed that complex formation required the presence of a 42 bp promoter domain shown to be critical for 4CL-1 expression in vascular and floral tissues. The results are discussed in light of the coordinate expression of 4CL and other phenylpropanoid genes.  相似文献   

20.
烟草4CL蛋白免疫荧光定位研究   总被引:1,自引:0,他引:1  
4-香豆酸辅酶A连接酶(4CL)是维管植物木质素生物合成途径的关键酶,应用原核表达系统获得了毛白杨可溶性4CL1融合蛋白,以Ni2 -Agrose亲和柱层析纯化得到的SDS-PAGE电泳纯的毛白杨4CL1融合蛋白为抗原,免疫家兔获得毛白杨4CL1多克隆抗体,Western blotting鉴定表明兔抗毛白杨4CL1多克隆抗体具有高度特异性,免疫荧光定位发现普通烟草4CL1蛋白特异性地在木质部表达.为进一步应用木质部特异表达启动子定向调控木质素生物合成奠定了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号