首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier work from this laboratory showed that enrichment of cells with free cholesterol enhanced the efflux of phospholipid to lipoprotein acceptors, suggesting that cellular phospholipid may contribute to high density lipoprotein (HDL) structure and the removal of sterol from cells. To test this hypothesis, we examined the efflux of [3H]cholesterol (FC) and [32P]phospholipid (PL) from control and cholesterol-enriched fibroblasts to delipidated apolipoproteins. The percentages of [3H]cholesterol and [32P]phospholipid released from control cells to human apolipoprotein A-I were 2.2 +/- 0.5%/24 h and 0.8 +/- 0.1%/24 h, respectively. When the cellular cholesterol content was doubled, efflux of both lipids increased substantially ([3H]FC efflux = 14.6 +/- 3.6%/24 h and [32P]PL efflux = 4.1 +/- 0.3%/24 h). Phosphatidylcholine accounted for 70% of the radiolabeled phospholipid released from cholesterol-enriched cells. The cholesterol to phospholipid molar ratio of the lipid released from cholesterol-enriched cells was approximately 1. This ratio remained constant throughout an incubation time of 3 to 48 h, suggesting that there was a coordinate release of both lipids. The concentrations of apoA-I, A-II, A-IV, E, and Cs that promoted half-maximal efflux of phospholipid from cholesterol-enriched fibroblasts were 53, 30, 68, 137, and 594 nM, respectively. With apoA-I and A-IV, these values for half-maximal efflux of phospholipid were identical to the concentrations that resulted in half-maximal efflux of cholesterol. Agarose gel electrophoresis of medium containing apoA-I that had been incubated with cholesterol-enriched fibroblasts revealed a particle with alpha to pre-beta mobility. We conclude that the cholesterol content of cellular membranes is an important determinant in the ability of apolipoproteins to promote lipid removal from cells. We speculate that apolipoproteins access cholesterol-phosphatidylcholine domains within the plasma membrane of cholesterol-enriched cells, whereupon HDL is generated in the extracellular compartment. The release of cellular lipid to apolipoproteins may serve as a protective mechanism against the potentially damaging effects of excess membrane cholesterol.  相似文献   

2.
The extent to which lipid and apolipoprotein (apo) concentrations in tissue fluids are determined by those in plasma in normal humans is not known, as all studies to date have been performed on small numbers of subjects, often with dyslipidemia or lymphedema. Therefore, we quantified lipids, apolipoproteins, high density lipoprotein (HDL) lipids, and non-HDL lipids in prenodal leg lymph from 37 fasted ambulant healthy men. Lymph contained almost no triglycerides, but had higher concentrations of free glycerol than plasma. Unesterified cholesterol (UC), cholesteryl ester (CE), phosphatidylcholine (PC), and sphingomyelin (SPM) concentrations in whole lymph were not significantly correlated with those in plasma. HDL lipids, but not non-HDL lipids, were directly related to those in plasma. Lymph HDLs were enriched in UC. However, as the HDL cholesterol/non-HDL cholesterol ratio in lymph exceeded that in plasma, whole lymph nevertheless had a lower UC/CE ratio than plasma. Lymph also had a significantly higher SPM/PC ratio. The lymph/plasma (L/P) ratios of apolipoproteins were as follows: A-IV > A-I and A-II > C-III and E > B. Comparison with the L/P ratios of seven nonlipoprotein proteins suggested that apoA-IV was predominantly lipid free. Concentrations of apolipoproteins A-II, A-IV, C-III, and E in lymph, but not of apolipoproteins A-I or B, were positively correlated with those in plasma. The L/P ratios of apolipoproteins B, C-III, and E in two subjects with lipoprotein lipase (LPL) deficiency, and of apolipoproteins A-I and A-IV in a subject with lecithin:cholesterol acyltransferase (LCAT) deficiency, were low relative to those in normal subjects. Thus, the concentrations of lipids, apolipoproteins, and lipoproteins in human tissue fluid are determined only in part by their concentrations in plasma. Other factors, including the actions of LPL and LCAT, are at least as important.  相似文献   

3.
Rat adrenal cells in culture were used to study the uptake of cholesteryl linoleyl ether [( 3H]cholesteryl linoleyl ether), a nonhydrolyzable analog of cholesteryl ester. When [3H]cholesteryl linoleyl ether was added in the form of liposomes, its uptake was enhanced by adrenocorticotropin (ACTH) and by addition of milk lipoprotein lipase and interfered by heparin. When the adrenal cells were incubated with homologous [3H]cholesteryl linoleyl ether-HDL, ACTH treatment also resulted in an increase in [3H]cholesteryl linoleyl ether uptake. The uptake of [3H]cholesteryl linoleyl ether was in excess of the uptake and metabolism of 125I-labeled HDL protein and was not sensitive to heparin. Unlabeled HDL or delipidated HDL reduced very markedly the uptake of [3H]cholesteryl linoleyl ether, while addition of phosphatidylcholine liposomes had little effect. Attempts were made to deplete and enrich the adrenal cells in cholesterol and, while depletion resulted in a decrease in [3H]cholesteryl linoleyl ether-HDL uptake, enrichment of cells with cholesterol had no effect. Among the individual apolipoproteins tested, apolipoprotein A-I and the C apolipoproteins reduced [3H]cholesteryl linoleyl ether uptake, while apolipoprotein E was not effective. Since the labeled ligand studied was a lipid, these effects could not be due to an exchange of apolipoproteins, but indicated competition for binding sites. Preferential uptake of human [3H]cholesteryl linoleyl ether-HDL3 by bovine adrenal cells was found when compared to the uptake and metabolism of 125I-labeled HDL. The present results suggest that the preferential uptake of HDL cholesteryl ester (as studied with [3H]cholesteryl linoleyl ether) requires an interaction between the apolipoproteins of HDL and cell surface components.  相似文献   

4.
Cholesterol efflux was studied in cultured mouse adipose cells after preloading with low density lipoprotein cholesterol. Exposure to complexes containing human apolipoprotein A-IV and L-alpha-dimyristoylphosphatidylcholine (DMPC) as well as to human lipoprotein particles containing apolipoprotein A-IV but not apolipoprotein A-I and particles containing apolipoproteins A-IV and A-I showed that both artificial and native apolipoprotein A-IV-containing particles were able to promote cholesterol efflux at 37 degrees C as a function of time and concentration. The half-maximal concentration was found to be 0.3 X 10(-6) M for apolipoprotein A-IV.DMPC complexes. Binding experiments performed in intact cells at 4 degrees C with labeled apolipoprotein A-IV.DMPC complexes showed the existence of specific binding sites, with a Kd value of 0.32 x 10(-6) M and a maximal binding capacity of 223,000 sites/cell. By cross-competition experiments with labeled and unlabeled complexes containing apolipoprotein A-IV, A-I, or A-II, it appeared that all three apolipoproteins bind to the same cell-surface recognition sites. It is suggested that apolipoprotein A-IV, which is present in the interstitial fluid surrounding adipose cells in vivo at concentrations similar to those required in vitro for the promotion of cholesterol efflux, plays a critical role in cholesterol removal from peripheral cells.  相似文献   

5.
We examined the effects of apolipoproteins A-IV and A-I on the catabolism of whole particles by hepatoma G2 cells and cultured primary hepatocytes. For this type of experiment, high density lipoprotein is unsuitable, because all of its lipid and protein components independently dissociate and exchange and hence poorly trace whole particle catabolism. We therefore used phosphatidylcholine liposomes with radioactive tracers entrapped within their aqueous cores. Apolipoproteins A-IV, A-I, or E added to liposomes became liposome-associated and produced no detectable release of encapsulated label. As a positive control, apolipoprotein E doubled the uptake of labeled liposomes by hepatoma cells, compared to apolipoprotein-free controls, and this increase could be blocked by the addition of excess unlabeled low density lipoprotein. Degradation of labeled liposomes by hepatoma cells was increased 6-fold by the addition of apolipoprotein E. In contrast, neither apolipoprotein A-IV nor A-I increased cellular uptake or degradation of the particles. Similar results were obtained with primary hepatocytes. In studies using apolipoprotein combinations, apolipoproteins A-IV and A-I were each able to displace apolipoprotein E from liposomes and thereby reduce cellular uptake. Our data indicate that apolipoproteins A-IV and A-I do not facilitate uptake or degradation of whole particles by liver-derived cells in vitro. However, these apolipoproteins may modulate receptor-mediated uptake of particles by reducing the amount of particle-bound apolipoprotein E.  相似文献   

6.
Rat luteal cells utilize high-density lipoproteins (HDL) as a source of cholesterol for steroid synthesis. Both the free and esterified cholesterol of HDL are utilized by these cells. In this report, we have examined the relative uptake of free and esterified cholesterol of HDL by cultured rat luteal cells. Incubation of the cells with HDL labeled with [3H]cholesterol or [3H]cholesteryl linoleate resulted in 4-6-fold greater uptake of the free cholesterol compared to esterified cholesterol. The increased uptake of free cholesterol correlated with its utilization for progestin synthesis: utilization of HDL-derived free cholesterol was 3-6-fold higher than would be expected from its concentration in HDL. The differential uptake and utilization of free and esterified cholesterol was further examined using egg phosphatidylcholine liposomes containing cholesterol or cholesteryl linoleate as a probe. Liposomes containing free cholesterol were able to deliver cholesterol to luteal cells and support steroid synthesis in the absence of apolipoproteins, and the addition of apolipoprotein A-I (apo A-I) moderately increased the uptake and steroidogenesis. Similar experiments using cholesteryl linoleate/egg phosphatidylcholine liposomes showed that inclusion of apo A-I resulted in a pronounced increase in the uptake of cholesteryl linoleate and progestin synthesis. These experiments suggest that free cholesterol from HDL may be taken up by receptor-dependent and receptor-independent processes, whereas esterified cholesterol uptake requires a receptor-dependent process mediated by apolipoproteins.  相似文献   

7.
Role of apolipoproteins in cellular cholesterol efflux   总被引:1,自引:0,他引:1  
The effects of serum apolipoproteins, particle size and concentration on the effectiveness of phosphatidylcholine (PC)-containing acceptor particles in causing release of cholesterol from cells growing in culture have been investigated. The acceptor particles were prepared by detergent-dialysis procedures and were either egg PC small unilamellar vesicles (SUV) or discoidal complexes of egg PC with apoproteins from human high-density lipoprotein (HDL). Gel filtration chromatography was employed to isolate particles of defined composition and size. The half-times (t 1/2) for the unidirectional efflux of cholesterol from cells prelabeled with [3H]cholesterol were measured as a function of acceptor PC concentration in the extracellular medium. HDL apolipoprotein-egg PC discoidal complexes at 100 micrograms PC/ml gave the following t 1/2 values when incubated with rat Fu5AH hepatoma, human HepG2 hepatoma, human GM3468 skin fibroblast, L-cell and mouse J774 macrophage-tumor cells: 11 +/- 2, 22 +/- 5, 84 +/- 18, 17 +/- 2 and 32 +/- 6 h, respectively. Equivalent experiments using purified apolipoprotein A-I or the total apolipoprotein C fraction to form the egg PC complexes showed that the t 1/2 values for the hepatoma cells were unaltered. However, with the fibroblasts, L-cells and J774 macrophages, the apolipoprotein C complexes gave significantly longer t 1/2 than complexes of egg PC with either apolipoprotein A-I or HDL apolipoprotein which gave the same t 1/2. An analysis based on the theory of fast coagulation of colloid particles to describe collisions between desorbed cholesterol molecules and acceptor particles predicts that the dependence of t 1/2 for cholesterol efflux from a given cell to different acceptors should be normalized when the extracellular level of acceptors is expressed in terms of the product of the radius of the particle times the number concentration of acceptor particles. The decrease in t 1/2 for cholesterol efflux from fibroblasts when the egg PC acceptor was changed from an SUV to an apolipoprotein HDL discoidal complex is consistent with the above concepts. The primary effect of the apolipoproteins in promoting cellular cholesterol efflux seems to be the solubilization of PC so that the PC is present in the extracellular medium as many small particles.  相似文献   

8.
Apolipoprotein A-IV, apolipoprotein E-2 and apolipoprotein E-3 were individually incorporated into defined phosphatidylcholine/cholesterol liposomes for study of lecithin:cholesterol acyltransferase activation. Enzyme activities obtained with these liposomes were compared with that from liposomes containing purified apolipoprotein A-I. Apolipoprotein A-IV, apolipoprotein E-2, and apolipoprotein E-3 all activated lecithin:cholesterol acyltransferase. With purified enzyme and with egg yolk phosphatidylcholine as the acyl donor, maximal activation was obtained at a concentration of approximately 0.5 nmol for apolipoprotein A-IV and 0.4 nmol for the apolipoprotein E isoforms. Apolipoprotein A-IV was approximately 25% as efficient as apolipoprotein A-I for the activation of purified enzyme; apolipoprotein E-2 was 40% as efficient, and apolipoprotein E-3, 30%. Similar activation results were obtained using plasma as the enzyme source. Analysis of the plasma of patients with absence of apolipoprotein A-I or with only trace amounts of apolipoprotein A-I exhibited a reduced rate of cholesterol esterification and lecithin:cholesterol acyltransferase activity that was proportional to the reduced level of the enzyme's mass. These results indicate that apolipoprotein A-IV and apolipoprotein E may serve as physiological cofactors for the enzyme reaction.  相似文献   

9.
Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 +/- 60 microliters g-1 cell protein) was fourfold higher than that in the seminiferous tubule cells (170 +/- 10 microliters g-1). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 micrograms apolipoprotein ml-1 medium), the uptake of [3H]cholesteryl oleate from phospholipid-apolipoprotein E vesicles was twofold higher than that with phospholipid-apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.  相似文献   

10.
The purpose of this study was to identify the apolipoprotein A-containing lipoprotein particles produced by HepG2 cells. The apolipoprotein A-containing lipoproteins separated from apolipoprotein B-containing lipoproteins by affinity chromatography of culture medium on concanavalin A were fractionated on an immunosorber with monoclonal antibodies to apolipoprotein A-II. The retained fraction contained apolipoproteins A-I, A-II and E, while the unretained fraction contained apolipoproteins A-I and E. Both fractions were characterized by free cholesterol as the major and triglycerides and cholesterol esters as the minor neutral lipids. Further chromatography of both fractions on an immunosorber with monoclonal antibodies to apolipoprotein A-I showed that 1) apolipoprotein A-II only occurs in association with apolipoprotein A-I, 2) apolipoprotein A-IV is only present as part of a separate lipoprotein family (lipoprotein A-IV), and 3) apolipoprotein E-enriched lipoprotein A-I:A-II and lipoprotein A-I are the main apolipoprotein A-containing lipoproteins secreted by HepG2 cells.  相似文献   

11.
The distribution of apolipoproteins A-I and A-IV among lymph lipoprotein fractions was studied after separation by molecular sieve chromatography, avoiding any ultracentrifugation. Lymph was obtained from rats infused either with a glucose solution or with a triacylglycerol emulsion. Relative to glucose infusion, triacylglycerol infusion caused a 20-fold increase in the output of triacylglycerol, coupled with a 4-fold increase in output of apolipoprotein A-IV. The output of apolipoprotein A-I was only elevated 2-fold. Chromatography on 6% agarose showed that lymph apolipoproteins A-I and A-IV are present on triacylglycerol-rich particles and on particles of the size of HDL. In addition, apolipoprotein A-IV is also present as 'free' apolipoprotein A-IV. The increase in apolipoprotein A-I output is caused by a higher output of A-I associated with large chylomicrons only, while the increase in apolipoprotein A-IV output is reflected by an increased output in all lymph lipoprotein fractions, including lymph HDL and 'free' apolipoprotein A-IV. The increased level of 'free' A-IV, seen in fatty lymph, may contribute to, and at least partly explain, the high concentrations of 'free' apolipoprotein A-IV present in serum obtained from fed animals.  相似文献   

12.
Amino acid precursors labelled with stable isotopes have been successfully used to explore the metabolism of the apolipoproteins of HDL. Some methodological and mathematical modelling problems remain, mainly related to amino acid recycling in a plasma protein such as apolipoprotein A-I with a long residence time (the reciprocal of the fractional catabolic rate) of 4-5 days. Apolipoprotein A-I, apolipoprotein E, and apolipoprotein A-IV in triglyceride-rich lipoproteins (containing chylomicrons, VLDL, and remnants) exhibit more complex kinetics. The small amounts of apolipoprotein A-I and of apolipoprotein A-IV in the triglyceride-rich lipoproteins have a residence time similar to that of the apolipoprotein A-I of HDL. In contrast, the apolipoprotein E in triglyceride-rich lipoproteins has been found to have an average residence time of 0.11 days. Diets low in saturated fat and cholesterol, which lower HDL levels, do so by decreasing the secretion of apolipoprotein A-I, with apolipoprotein A-II kinetics unaffected. Individuals with impaired glucose tolerance have a decreased residence time of apolipoprotein A-I but no change in secretion rate or in apolipoprotein A-II kinetics. This suggests a link between insulin resistance and the risk of atherosclerosis. In heterozygous familial hypercholesterolemia, both the fractional catabolic rate and the secretion rate of apolipoprotein A-I are increased, resulting in no change in the plasma level. Stable isotope studies have strengthened the evidence that triglyceride enrichment of HDL increases its catabolism Laboratory.  相似文献   

13.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

14.
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I.  相似文献   

15.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

16.
We have used a preparation of rat liver plasma membranes to study the binding of rat apolipoprotein E-deficient HDL to rat liver. The membranes were found to bind HDL by a saturable process that was competed for by excess unlabeled HDL. The binding was temperature-dependent and was 85% receptor-mediated when incubated at 4, 22 and 37 degrees C. The affinity of the binding site for the HDL was consistent at all temperatures, while the maximum binding capacity increased at higher temperatures. The specific binding of HDL to the membranes did not require calcium and was independent of the concentration of NaCl in the media. The effect of varying the pH of the media on HDL binding was small, being 30% higher at pH 6.5 than at pH 9.0. Both rat HDL and human HDL3 were found to compete for the binding of rat HDL to the membranes, whereas rat VLDL remnants and human LDL did not compete. At 4 degrees C, complexes of dimyristoylphosphatidylcholine (DMPC) and apolipoproteins A-I, A-IV and the C apolipoproteins, but not apolipoprotein E, competed for HDL binding to the membranes. At 22 and 37 degrees C, all DMPC-apolipoprotein complexes competed to a similar extent, DMPC vesicles that contained no protein did not compete for the binding of HDL. These results suggest that the rat liver possesses a specific receptor for apolipoprotein E-deficient HDL that recognizes apolipoproteins A-I, A-IV and the C apolipoproteins as ligands.  相似文献   

17.
The objective of the present study was to investigate the involvement of key players in reverse cholesterol/24(S)OH-cholesterol transport in primary porcine brain capillary endothelial cells (pBCEC) that constitute the BBB. We identified that, in addition to scavenger receptor class B, type I (SR-BI), pBCEC express ABCA1 and apolipoprotein A-I (apoA-I) mRNA and protein. Studies on the regulation of ABCA1 by the liver X receptor agonist 24(S)OH-cholesterol revealed increased ABCA1 expression and apoA-I-dependent [3H]cholesterol efflux from pBCEC. In unpolarized pBCEC, high density lipoprotein, subclass 3 (HDL3)-dependent [3H]cholesterol efflux, was unaffected by 24(S)OH-cholesterol treatment but was enhanced 5-fold in SR-BI overexpressing pBCEC. Efflux of cellular 24(S)-[3H]OH-cholesterol was highly efficient, independent of ABCA1, and correlated with SR-BI expression. Polarized pBCEC were cultured on porous membrane filters that allow separate access to the apical and the basolateral compartment. Addition of cholesterol acceptors to the apical compartment resulted in preferential [3H]cholesterol efflux to the basolateral compartment. HDL3 was a better promoter of basolateral [3H]cholesterol efflux than lipid-free apoA-I. Basolateral pretreatment with 24(S)OH-cholesterol enhanced apoA-I-dependent basolateral cholesterol efflux up to 2-fold along with the induction of ABCA1 at the basolateral membrane. Secretion of apoA-I also occurred preferentially to the basolateral compartment, where the majority of apoA-I was recovered in an HDL-like density range. In contrast, 24(S)-[3H]OH-cholesterol was mobilized efficiently to the apical compartment of the in vitro BBB by HDL3, low density lipoprotein, and serum. These results suggest the existence of an autoregulatory mechanism for removal of potentially neurotoxic 24(S)OH-cholesterol. In conclusion, the apoA-I/ABCA1- and HDL/SR-BI-dependent pathways modulate polarized sterol mobilization at the BBB.  相似文献   

18.
The effect of rat whole blood plasma, serum, serum lipoproteins, and apolipoproteins on the stability of unilamellar liposomes prepared with French pressure cell was evaluated by measuring the release of entrapped carboxyfluorescein and by electron microscopy. In the absence of serum components, dye escaped very slowly (hours) from egg phosphatidylcholine and phosphatidylcholine-cholesterol (43 mol % cholesterol) vesicles without apparent change in liposomal structure. This slow release was both temperature- and size-dependent. serum and some of its constituents induced a far more rapid (seconds) loss of entrapped dye from phosphatidylcholine liposomes, associated with structural changes. For equal masses of protein the order of potency of this induced activity was: free apolipoproteins (apo A-I, apo E) > isolated lipoproteins (HDL and VLDL) > whole serum or whole plasma. Substantial activity was found in three preparations of bovine serum albumin. This activity could be attributed to small and variable amounts of contaminating lipoprotein-like particles and apolipoprotein A-I. Induced release of dye from liposomes by apolipoproteins was usually associated with rapid formation of discs although other structures were sometimes formed. Purified rat apolipoproteins A-I and E appeared to interact identically with liposomes to induce dye release. This effect was progressively impaired for both apoproteins by increasing amounts of cholesterol and was completely inhibited when liposomes contained 37 mol % cholesterol.  相似文献   

19.
Although it is known that plasma lecithin:cholesterol acyltransferase (LCAT) is activated by several apolipoproteins (apo) including A-I, C-I, D, A-IV, and E, it is not clear what the physiological importance of having different apolipoprotein activators is. One possible explanation is that the activation by different apolipoproteins may result in the utilization of different species of phosphatidylcholine (PC), leading to the formation of different species of cholesteryl esters (CE). In order to determine this possibility, we analyzed the molecular species composition of PC and CE in two patients with familial deficiency of apoA-I and apoC-III. The LCAT activity, assayed by three different procedures, was found to be 36-63% of the control value. The lower LCAT activity, however, was due to deficiency of the enzyme rather than the absence of apoA-I. The patients' plasma was relatively enriched with sn-2 18:2 PC species reflecting the partial deficiency of LCAT activity. The fatty acid composition of plasma CE was not significantly different from that of controls. HPLC analysis of labeled CE formed after incubation of plasma with [C14]cholesterol showed no significant difference in the species of CE synthesized by the LCAT reaction. The transfer of pre-existing as well as newly formed CE from HDL to the apoB-containing lipoproteins was accelerated compared to control plasma. These results show that the absence of apoA-I does not significantly affect either the activity or the specificity of LCAT, and that the other apolipoprotein activators can substitute adequately for it.  相似文献   

20.
We have investigated the binding of human apolipoprotein A-IV (apo A-IV) to human hepatocellular plasma membranes. Addition of increasing concentrations of radiolabeled apo A-IV to hepatic plasma membranes, in the presence and absence of a 25-fold excess of unlabeled apo A-IV, revealed saturation binding to the membranes with a KD of 154 nM and a binding maximum of 1.6 ng/microgram of membrane protein. The binding was temperature-insensitive, partially calcium-dependent, abolished when apo A-IV was denatured by guanidine hydrochloride or when the membranes were treated with Pronase and decreased when apo A-IV was incorporated into phospholipid/cholesterol proteoliposomes. In displacement studies using purified apolipoproteins and isolated lipoproteins, only unlabeled apo A-IV, apo A-I and high-density lipoproteins effectively competed with radiolabeled apo A-IV for membrane binding sites. We conclude that human apo A-IV exhibits high-affinity binding to isolated human hepatocellular plasma membranes which is saturable, reversible and specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号