首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
myo-Inositol transport by retinal capillary pericytes in culture was characterized. The major myo-inositol transport process was sodium-dependent, ouabain-sensitive, and saturable at 40 mM, indicating a carrier-mediated process. The sodium ion concentration required to produce one-half the maximal rate of myo-inositol uptake ([Na+]0.5) did not show dependence on the external myo-inositol concentration (22.3 mM sodium for 0.005 mM myo-inositol; 18.2 mM sodium for 0.05 mM myo-inositol). myo-Inositol transport was an energy-dependent, active process functioning against a myo-inositol concentration gradient. The kinetics of the sodium-dependent system fitted a 'velocity type' co-transport model where binding of sodium ion to the carrier increased the velocity (Vmax 28 to 313 pmol myo-inositol/micrograms DNA per 20 min when [Na+] varied from 9 to 150 mM) but not the affinity for myo-inositol (Km 0.92 to 0.83 mM when [Na+] varied from 9 to 150 mM). Metabolizable hexoses (D-glucose or D-galactose; greater than 5 mM) inhibited myo-inositol uptake. Dixon-plot analysis indicated that the inhibition was non-competitive with a Ki of 22.7 mM for D-glucose and 72.6 mM for D-galactose. The inhibition was significantly reversed by Sorbinil (0.1 mM), an aldose reductase inhibitor. In contrast, high concentrations of non-metabolizable hexoses (L-glucose, 3-O-methyl-D-glucose), or partially metabolizable 2-deoxy-D-glucose, did not significantly inhibit myo-inositol uptake. The inhibitory effect of D-glucose or D-galactose on myo-inositol transport appeared to be related to glucose or galactose metabolism via the polyol pathway.  相似文献   

2.
The phlorizin binding properties of luminal membrane vesicles isolated from the LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, are studied. Scatchard analysis of this binding indicates the existence of a single high affinity sodium-dependent site with KD = 0.4 microM at 266 mM sodium. The specificity properties of this site indicate that it represents the binding of phlorizin to the hexose binding site of the sodium-dependent D-glucose transporter previously identified in this cell line. Both phlorizin equilibrium binding and the rate of phlorizin binding were found to be sigmoidal functions of sodium concentration. A Hill analysis of these data was consistent with a sodium:phlorizin stoichiometry of 2:1 in good agreement with the sodium:glucose stoichiometry already established in these cells. Phlorizin dissociation was also found to be sodium-dependent. On the basis of the phlorizin binding data presented here, a number of models of the binding of phlorizin and sodium to the transporter can be excluded. An analysis of a random binding model consistent with the data is presented. The significance of the LLC-PK1 sodium-dependent D-glucose transporter as a model system for related renal and intestinal transporters is discussed.  相似文献   

3.
The effect of ethanol on sodium and glucose transport in rabbit renal brush border membrane vesicles was examined. When membrane vesicles were preincubated in the presence of ethanol the sodium-dependent D-glucose uptake was significantly inhibited. This effect, as suggested by O'Neill et al. (1986) FEBS Lett. 194, 183-188, may be due to a faster collapse of the Na+ gradient. As a matter of fact, the amiloride-insensitive sodium pathway was increased by ethanol in our brush border membrane preparation. However, sodium/D-glucose cotransport was inhibited by ethanol, although to a lesser degree, also in the absence of a sodium gradient. In addition, ethanol inhibited glucose-dependent sodium uptake, suggesting that a direct interaction with the translocator was involved. This conclusion was also supported by kinetic measurements showing a decrease of Vmax and an increase in Km for glucose in membrane vesicles treated with ethanol. Moreover, ethanol influenced the interaction of phlorizin with the cotransporter: uptake experiments performed in the presence of the two inhibitors demonstrated that phlorizin and ethanol behave as not mutually exclusive inhibitors of D-glucose transport. These data indicate that in rabbit renal brush border membranes ethanol not only affects the 'passive pathway', i.e. the sodium permeability, but it also directly interferes with carrier functions.  相似文献   

4.
Brush border membranes from renal proximal tubules were solubilized with deoxycholate, and the proteins were incorporated into liposomes formed from cholesterol and phosphatidylserine by a freeze-thaw procedure. In the proteoliposomes Na+-D-glucose cotransport was demonstrated by showing that the D-glucose concentration in the liposomes increased far above the equilibrium value if a Na+ gradient was applied. The initial D-glucose uptake rate, stimulated by an inside directed gradient of 89 mM Na+, was 4 pmol/mg of protein-1 s-1. High affinity phlorizin binding could not be measured. After two precipitation steps with the solubilized membrane proteins, a protein fraction was obtained in which significantly high affinity phlorizin binding was detected. After reconstitution, proteoliposomes were formed in which more than 70% of the protein was represented by two polypeptides with molecular weights of 94,000 and 52,000. An initial Na+ gradient-dependent D-glucose uptake rate of 118 pmol/mg of protein-1 s-1 was obtained. In these liposomes, the D-glucose uptake rate could be inhibited by phlorizin (Ki = 0.3 microM), and 55-pmol phlorizin-binding sites per mg of protein (KD = 0.5 microM) were measured. In different liposomal preparations a correlation between Na+ gradient-dependent D-glucose uptake rate and the amount of 52,000 molecular weight polypeptide was observed.  相似文献   

5.
Peptostreptococcus anaerobius converted glutamine stoichiometrically to ammonia and pyroglutamic acid, and the Eadie-Hofstee plot of glutamine transport was biphasic. High-affinity, sodium-dependent glutamine transport (affinity constant [Kt] of 1.5 microM) could be driven by the chemical gradient of sodium, and more than 20 mM sodium was required for half-maximal velocity. High-affinity glutamine transport was not stimulated or inhibited by a membrane potential (delta psi). Low-affinity glutamine transport had a rate which was directly proportional to the external glutamine concentration, required less than 100 microM sodium, and was inhibited strongly by a delta psi. Cells which were treated with N,N-dicyclohexylcarbodiimide to inhibit the F1F0 ATPase still generated a delta psi but did so only if the external glutamine concentration was greater than 15 mM. Low-affinity glutamine uptake could not be saturated by as much as 200 mM glutamine, but glutamine-1 accounts for only a small fraction of the total glutamine at physiological pH values (pH 6 to 7). On the basis of these results, it appeared that the low-affinity glutamine transport was an electrogenic mechanism which was converting a chemical gradient of glutamine-1 into a delta psi. Other mechanisms of delta psi generation (electrogenic glutamine-pyroglutamate or -ammonium exchange) could not be demonstrated.  相似文献   

6.
A comparison of L-valine and D-glucose transport was carried out with vesicles of plasma membrane isolated either from the luminal (brush border) or from the contra-luminal (basolateral) region of small intestinal epithelial cells. The existence of transport systems for both non-electrolytes was demonstrated by stereospecificity and saturability of uptake, as well as tracer coupling. Transport of L-valine and D-glucose differs markedly in the two types of plasma membrane with respect to stimulation by Na+. The presence of Na+ stimulated initial L-valine and D-glucose uptake in brush border, but not in basolateral membrane. Moreover, an electro-chemical Na+ gradient, oriented with the lower potential on the inside, supported accumulation of the non-electrolytes above medium concentration only in the brush border membrane. L-Valine and D-glucose transport also were saturated at lower concentrations in brush border (10-20 mM) than in basolateral plasma membranes (30-50 mM). A third difference between the two membranes was found in the effectiveness of known inhibitors of D-glucose transport. In brush border membranes phlorizin was more potent than phloretin and 2', 3', 4'-trihydroxy-4-methoxy chalcone and cytochalasin B did not inhibit at all. In contrast, with the basolateral plasma membranes the order of potency was changed to phloretin = 2',3',4'-trihydroxy-4-methoxy chalcone greater than cytochalasin B greater than phlorizin. These results indicate the presence of different types of transport systems for monosaccharides and neutral amino acids in the luminal and contra-luminal region of the plasma membrane. Active transepithelial transport can be explained on the basis of the different properties of the non-electrolyte transport systems in the two cellular regions and an electro-chemical Na+ gradient that is dependent on cellular metabolism.  相似文献   

7.
Uptake studies of D- and L-glucose were performed on vesicles derived from brush-border and basal-lateral membranes. The uptake of the sugars into the vesicles was osmotically sensitive and independent of glucose metabolism. In brush-border vesicles D-glucose but not L-glucose transport was Na+ -dependent, was inhibited by phlorizin, and showed a transitory vesicle/medium ratio greater than 1, in the presence of an initial Na+ gradient. Basal-lateral membranes take up D-glucose faster than L-glucose, but the D-glucose uptake is significantly less sensitive to sodium removal and only moderately inhibited by phlorizin as compared to the brush-border fraction.  相似文献   

8.
In this study, we have characterized the Na/glucose transporter in polarized monolayers formed by the clonal human colon carcinoma cell line HT-29-D4. Isotopic tracer flux measurements show that differentiated HT-29-D4 cells possess a sodium-dependent α-methyl-D-glucopyranoside (AMG) uptake that is competed for by increasing concentrations of D-glucose, D-galactose, and phlorizin. This transport is exclusively localized on the apical side of the epithelium. Kinetic data demonstrate the existence of a single Michaelian sodium-dependent AMG transporter with a Km of 1.2 ± 0.12 mM and a Vmax of 3.24 ± 0.25 nmol/mg of protein per min. Hill analysis reveals a coefficient of 1.9 ± 0.03, consistent with at least two sodium ions involved in AMG transport. Interestingly, the cotransporter function is not modulated by glucose in the culture medium. Transepithelial electrical parameter measurements show that the transepithelial potential difference (Vt) is glucose dependent and phlorizin sensitive. Antibodies directed against a peptide of the rabbit intestinal glucose cotransporter (Ser402-Lys420) recognize, in western blot experiments, the characteristic bands of the cotransporter on a crude membrane preparation of differentiated HT-29-D4 cells and react strongly with the apical domain of the monolayer in immunofluorescence experiments. We conclude that HT-29-D4 cells express the sodium/glucose cotransporter SGLT1 at their apical membrane and that this transporter generates the basal transepithelial potential difference. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Target sizes of the renal sodium-D-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at -50 degrees C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent D-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4-4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 +/- 38 000. From the tracer exchange experiments a molecular weight of 345 000 +/- 24 500 was calculated for the D-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and gamma-glutamyltransferase, whose target sizes were found to be 68 570 +/- 2670 and 73 500 +/- 2270, respectively. These findings provide further evidence for the assumption that the sodium-D-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and D-glucose translocation.  相似文献   

10.
The immunosuppressive and nephrotoxic agent cyclosporin binds to a renal polypeptide with an apparent molecular weight of 75,000 which has been identified as a component of the renal Na(+)-D-glucose cotransporter (Neeb, M., Kunz, U., and Koepsell, H. (1987) J. Biol. Chem. 262, 10718-10729). The same Mr 75,000 polypeptide was covalently labeled with the D-glucose analog 10-N-(bromoacetyl)amino-1-decyl-beta-D-glucopyranoside and with the cyclosporin analog N epsilon-(diazotrifluoroethyl)benzyl-D-Lys8- cyclosporin (CSDZ). CSDZ labeling was decreased when the brush-border membrane proteins were incubated with monoclonal antibodies against the Na(+)-D-glucose cotransporter. In the presence of 145 mM Na+, CSDZ labeling was decreased by D-glucose (1 microM, 1 mM, or 100 mM) and by phlorizin (100 or 500 microM). In the absence of Na+, CSDZ labeling was distinctly increased by 50 microM phlorizin and was slightly increased by 1 mM D-glucose, whereas CSDZ labeling was decreased by 50 microM phloretin and by 500 microM phlorizin. Furthermore, Na(+)-dependent high affinity phlorizin binding to the Na(+)-D-glucose cotransporter was competitively inhibited by cyclosporin A (Ki = 0.04 microM) while Na(+)-D-glucose cotransport was not influenced. The data suggest that a part of the cyclosporin binding domain on the Na(+)-D-glucose cotransporter is identical to the phloretin binding domain of the high affinity phlorizin binding site. While phloretin or the phloretin moiety of phlorizin may directly displace cyclosporin, interaction of D-glucose or of the D-glucose moiety of phlorizin with the transporter may alter the conformation of the cyclosporin binding site and this conformational change may be modulated by Na+.  相似文献   

11.
The characteristics of renal transport of D-galactose by luminal membrane vesicles from either whole cortex, pars recta or pars convoluta of rabbit proximal tubule were investigated by a spectrophotometric method using a potential-sensitive carbocyanine dye. Uptake of D-galactose by luminal membrane vesicles prepared from whole cortex was carried out by an Na+-dependent and electrogenic process. Eadie-Hofstee analysis of saturation-kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for the uptake of D-galactose. Tubular localization of the transport systems was studied by the use of vesicles derived from pars recta and pars convoluta. In pars recta, Na+-dependent transport of D-galactose and D-glucose occurred by means of a high-affinity system (half-saturation: D-galactose, 0.15 +/- 0.02 mM; D-glucose, 0.13 +/- 0.02 mM). These results indicated that the "carrier' responsible for the uptake of these hexoses does not discriminate between the steric position of the C-4 hydroxyl group of these two isomers. This is further confirmed by competition experiments, which showed that D-galactose and D-glucose are taken up by the same and equal affinity transport system by these vesicle preparations. Uptake of D-galactose and D-glucose by luminal membrane vesicles isolated from pars convoluta was mediated by a low-affinity common transport system (half-saturation: D-galactose, 15 +/- 2 mM; D-glucose, 2.5 +/- 0.5 mM). These findings strongly suggested that the "carrier' involved in the transport of monosaccharides in vesicles from pars convoluta is specific for the steric position of the C-4 hydroxyl group of these sugars and presumably interacts only with D-glucose at normal physiological concentration.  相似文献   

12.
To characterize further the Na+/d-glucose cotransport system in renal brush border membranes, phlorizin - a potent inhibitor of d-glucose transport - has been chemically modified without affecting the d-glucose moiety or changing the side groups that are essential for the binding of phlorizin to the Na+/d-glucose cotransport system. One series of chemical modifications involved the preparation of 3-nitrophlorizin and the subsequent catalytic reduction of the nitro compound to 3-aminophlorizin. From 3-aminophlorizin, 3-bromoacetamido-, 3-dansyl- and 3-azidophlorizin have been synthesized. In another approach, 3′-mercuryphlorizin was obtained by reaction of phlorizin with Hg(II) acetate. The phlorizin derivatives inhibit sodium-dependent but not sodium-independent d-glucose uptake by hog renal brush border membrane vesicles in the following order of potency: 3′-mercuryphlorizin = phlorizin > 3-aminophlorizin > 3-bromoacetamidophlorizin > 3-azidophlorizin > 3-nitrophlorizin > 3-dansylphlorizin. 3-Bromoacetamidophlorizin - a potential affinity label - also inhibits sodium-dependent but not sodium-independent phlorizin binding to brush border membranes. In addition, sodium-dependent phosphate and sodium-dependent alanine uptake are not affected by 3-bromoacetamidophlorizin. The results described above indicate that specific modifications of the phlorizin molecule at the A-ring or B-ring are possible that yield phlorizin derivatives with a high affinity and high specificity for the renal Na+/d-glucose cotransport system. Such compounds should be useful in future studies using affinity labeling (3-bromoacetamido- and 3-azidophlorizin) or fluorescent probes (3-dansylphlorizin).  相似文献   

13.
1,25-Dihydroxycholecalciferol, when present at and above 10 nM in an organ-culture system of embryonic chick jejunum, approximately doubled the rate of Na(+)-gradient-driven D-glucose uptake by brush-border membrane vesicles, but had no effect on Na(+)-independent D-glucose transfer. The sterol also had no effect on Na+ influx along an outside/inside Na+ gradient ([Na+]o = 100 mM; [Na+]i = 0 mM). This renders it unlikely that in embryonic intestine, calcitriol raises Na(+)-dependent D-glucose transport through changes in the electrochemical Na+ gradient. D-[U-14C]Glucose tracer exchange, measured under voltage-clamp condition at Na+/D-glucose equilibrium, revealed that addition of calcitriol to the culture medium approximately doubled the activity of the Na+/D-glucose transporter in the brush-border membrane. This was also reflected by an corresponding increase in the maximal velocity of the transfer process. Increased [3H]phlorizin binding after calcitriol treatment suggests that the steroid hormone activates Na+/D-glucose transport through increasing the number of carrier molecules in the brush-border membrane. 10 nM triiodothyronine, which by itself has no effect on Na(+)-dependent D-glucose transport, potentiated the effect of 1,25-dihydroxycholecalciferol such that in the presence of both hormones, Na+/D-glucose-carrier activity was increased fourfold above control levels.  相似文献   

14.
Sugar transport by sacs of everted intestine of snail have been measured in vitro at 30 degrees C. D-galactose, D-glucose and 3-O-methylglucose were actively transported against a concentration gradient from the mucosal to the serosal compartment. The transport of these sugars was inhibited by 5 times 10(-8) to 10(-6) M phlorizin. L-arabinose was also accumulated in the serosal compartment against a concentration gradient; in this case, transport was not affected by phlorizin. The snail intestine did not show any ability for D-fructose active transport but there was a clear uptake of this sugar by the tissue. The O2 uptake of the snail intestine was not significantly affected by the presence of either sugars or phlorizin.  相似文献   

15.
The transport characteristics of (1D)chiro-inositol by the ciliate Tetrahymena were examined in competition studies employing [3H](1D)chiro-inositol. (1D)chiro-Inositol transport was competed by unlabeled (1D)chiro-inositol, myo-inositol, scyllo-inositol, and D-glucose in a concentration-dependent manner. Conversely, (1D)chiro-inositol competed for [3H]myo- and [3H]scyllo-inositol transport. Lineweaver-Burke analysis of the competition data indicated a Km of 10.3 mM and a Bmax of 4.7 nmol/min/mg for (1D)chiro-inositol. Transport of (1D)chiro-inositol was inhibited by cytochalasin B, an inhibitor of facilitated glucose transporters, and phlorizin, an inhibitor of sodium-dependent transporters. Removal of sodium from the radiolabeling buffer also inhibited uptake. The presence of 0.64 mM calcium or magnesium ions exerted negligible effects on transport, although potassium was inhibitory. [3H](1D)chiro-Inositol was shown to be incorporated into Tetrahymena phosphoinositides.  相似文献   

16.
To characterize further the Na+/d-glucose cotransport system in renal brush border membranes, phlorizin - a potent inhibitor of d-glucose transport - has been chemically modified without affecting the d-glucose moiety or changing the side groups that are essential for the binding of phlorizin to the Na+/d-glucose cotransport system. One series of chemical modifications involved the preparation of 3-nitrophlorizin and the subsequent catalytic reduction of the nitro compound to 3-aminophlorizin. From 3-aminophlorizin, 3-bromoacetamido-, 3-dansyl- and 3-azidophlorizin have been synthesized. In another approach, 3′-mercuryphlorizin was obtained by reaction of phlorizin with Hg(II) acetate. The phlorizin derivatives inhibit sodium-dependent but not sodium-independent d-glucose uptake by hog renal brush border membrane vesicles in the following order of potency: 3′-mercuryphlorizin = phlorizin > 3-aminophlorizin > 3-bromoacetamidophlorizin > 3-azidophlorizin > 3-nitrophlorizin > 3-dansylphlorizin. 3-Bromoacetamidophlorizin - a potential affinity label - also inhibits sodium-dependent but not sodium-independent phlorizin binding to brush border membranes. In addition, sodium-dependent phosphate and sodium-dependent alanine uptake are not affected by 3-bromoacetamidophlorizin. The results described above indicate that specific modifications of the phlorizin molecule at the A-ring or B-ring are possible that yield phlorizin derivatives with a high affinity and high specificity for the renal Na+/d-glucose cotransport system. Such compounds should be useful in future studies using affinity labeling (3-bromoacetamido- and 3-azidophlorizin) or fluorescent probes (3-dansylphlorizin).  相似文献   

17.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  相似文献   

18.
In the presence of an NaSCN gradient phlorizin binds with a high affinity (Kd ? 4.7 μM) to vesicles derived from brush border membranes of intestinal cells of rabbits. The value for Kd corresponds closely to that of Ki determined from phlorizin inhibition of sugar transport. The apparent affinity for phlorizin is decreased if NaCl is substituted for NaSCN and decreased substantially if the gradient of NaSCN is allowed to dissipate prior to the phlorizin binding. The number of high affinity binding sites is about 11 pmol/mg protein. Additional binding to low affinity sites can amount to as much as 600 pmol/mg protein after prolonged exposure to phlorizin (5 min). The high affinity sites are related to glucose transport based on the similarity of the Kd and Ki values under a variety of conditions and on the inhibition of the binding by D-glucose but not by D-fructose. The transport system and the high affinity phlorizin binding sites can be enriched by a factor of 2–3 by treatment of vesicles with papain, which does not affect the transport system, but considerably hydrolyzes nonrelevant protein.  相似文献   

19.
The gill of the marine mussel, Mytilus, contains a high affinity, Na-dependent D-glucose transporter capable of accumulating glucose directly from sea water. We examined the ability of the beta-glucoside, phlorizin, to act as a high-affinity ligand of this process in intact gills and isolated brush border membrane vesicles (BBMV). The time course of association of nanomolar [3H]phlorizin to gills and BBMV was slow, with t50 values between 10 and 30 min, and a half-time for dissociation of approx. 30 min. 1 mM D-glucose reduced equilibrium binding of 1 nM phlorizin by 90-95%, indicating that there was little non-specific binding of this ligand to the gill. In addition, there was little, if any, hydrolysis by the gill of phlorizin to its constituents, glucose and phloretin. Phlorizin binding to gills and BBMV was significantly inhibited by the addition of 50 microM concentrations of D-glucose and alpha-methyl-D-glucose, and unaffected by the addition of L-glucose and fructose. Binding to gills and BBMV was reduced by greater than 90% when Na+ was replaced by K+. Replacement of Na+ by Li+ effectively blocked binding to the intact gill, although Li+ did support a limited amount of glucose-specific phlorizin binding in BBMV. The Kd values for glucose-specific phlorizin binding in intact gills and BBMV were 0.5 nM and 6 nM, respectively. We conclude that phlorizin binds with extremely high affinity to the Na-dependent glucose transporter of Mytilus gill, which may be useful in future efforts to isolate and purify the protein(s) involved in integumental glucose transport.  相似文献   

20.
Kumar A  Tyagi NK  Goyal P  Pandey D  Siess W  Kinne RK 《Biochemistry》2007,46(10):2758-2766
Although there is no evidence of significant Na-independent glucose flux in tissues naturally expressing SGLT1, previous kinetic and biophysical studies suggest that sodium/d-glucose cotransporter 1 (hSGLT1) can facilitate sodium-independent d-glucose transport and may contain more than one sugar binding site. In this work, we analyze the kinetic properties and conformational states of isolated hSGLT1 reconstituted in liposomes by transport and fluorescence studies in the absence of sodium. In the transport studies with hSGLT1, significant sodium-independent phlorizin inhibitable alpha-methyl d-glucopyranoside (alpha-MDG) uptake was observed which amounted to approximately 20% of the uptake observed in the presence of a sodium gradient. The apparent affinity constant for alpha-MDG was thereby 3.4 +/- 0.5 mM, a value approximately 10-fold higher than that in the presence of sodium. In the absence of sodium, various sugars significantly decreased the intrinsic Trp fluorescence of hSGLT1 in proteoliposomes exhibiting the following sequence of affinities: alpha-MDG > d-glucose approximately d-galactose > 6-deoxy-d-glucose > 2-deoxy-d-glucose > d-allose. Furthermore, significant protection effects of d-glucose or phlorizin against potassium iodide, acrylamide, or trichloroethanol quenching were observed. To locate the Trps involved in this reaction, we generated mutants in which all Trps were sequentially substituted with Phe. None of the replacements significantly affected sodium-dependent uptake. Uptake in the absence of sodium and typical fluorescence changes depended, however, on the presence of Trp at position 561. This Trp residue is conserved in all known SGLT1 forms (except Vibrio parahaemolyticus SGLT) and all SGLT isoforms in humans (except hSGLT3). If all these data are taken into consideration, it seems that Trp-561 in hSGLT1 forms part of a low-affinity sodium-independent binding and/or translocation site for d-glucose. The rate of sodium-independent translocation via hSGLT1 seems, however, to be tightly regulated in the intact cell by yet unknown factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号