首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlated immunofluorescence and electron microscopy was used to study neurofilament expression, organization and structure in cultured neurones of newborn rat dorsal root ganglia. The results extend previous immunofluorescent data subdividing the neurones into two main classes: neurones rich in neurofilaments, expressing all three triplet proteins and neurones without noticeable neurofilaments which cannot be stained positively for any of the triplet proteins. The two classes are identified as the large light cells and small dark cells characteristically found in adult dorsal root ganglia in situ. Further ultrastructural characterization identifies the various subclasses of each major class in the cultures used. Cytoskeletons of neurofilament-rich neurones decorated by antibodies specific for each triplet protein lead to the following model. All three triplet proteins are associated with each individual filament, although the antibodies show a different localization. Whereas the 68K protein seems to form the backbone of the filament, the 200K protein is periodically arranged (repeat approx. 100 nm) in a more peripheral position. The 145 K protein is revealed in a nearly continuous manner along the filament.  相似文献   

2.
A collection of antibodies specific to different intermediate filament proteins were applied to frozen sections of adult rat brains. The relative distribution of these proteins was then studied using double label immunofluorescence microscopy. Antibodies specific to each of the neurofilament "triplet" proteins (of approximate molecular weight 68 K, 145 K and 200 K) stained exclusively neuronal structures. The distribution of these three antigens was in general identical, except that certain neurofilament populations such as those in the dendrites and cell bodies of pyramidal cells of the hippocampus and cerebral cortex, contained relatively little if any 200 K protein. Some neurone populations, such as the granule cells of the cerebellar cortex, could not be visualized by neurofilament antibodies, indicating that neurofilaments may not be essential for function of all neurones in vitro. Antibodies to GFA and vimentin stained an entirely different population of processes, none of which stained with any of the neurofilament antibodies. Vimentin antibody stained sheath material around the brain, a monolayer of ependymal cell bodies lining the ventricles, fibrous material associated within the choroid plexus, the walls of blood vessels and capillaries, and the processes of cells in certain regions. GFA antibody stained a second layer of sheath material under the vimentin layer, and numerous processes visible throughout the brain. Some specific populations of GFA-positive processes proved to stain also with vimentin. These included the processes of Golgi "epithelial" cells (Bergmann glial fibres), those of certain astrocytes in bundles of myelinated fibers. In addition, some processes apparently derived from ependymal cells proved to stain for both vimentin and GFA, whilst other could only be reliably visualized by vimentin alone. These results are discussed in terms of the previously described morphological characteristics of the various cell types of the brain.  相似文献   

3.
4.
The three proteins of the mammalian neurofilament ‘triplet’ were purified from rat sciatic nerve as individual polypeptides. Antibodies were raised in rabbits and in guinea pigs. When tested by the very sensitive immune-blotting technique some of the antibodies proved to be completely specific for the peptide to which they had been raised. Others, however, exhibited weak cross-reactivity with other proteins of the triplet. Cross-reacting IgGs could be removed by appropriate antigen affinity chromatography. Thus a series of rabbit and guinea pig antibodies specific for each of the triplet proteins was obtained. The antibodies were used in immunofluorescence microscopy on cultured rat dorsal root ganglion cells. Only cells with a neuronal morphology were stained by these antibodies, some very strongly and some extremely weakly. When double immunofluorescence was performed it was found that cells stained in an equivalent manner with any combination of antibodies. Neurones which stained strongly with any one antibody could be stained strongly with any other and the converse was true for weakly staining cells. When fine profiles in the growth cones of positive cells were examined it was found that these profiles, representing single or small numbers of neurofilaments, were stained in an identical manner in double immunofluorescence. The results show that the distribution of the three proteins is identical at the level of resolution of the light microscope in rat dorsal root ganglion neurones in tissue culture, and lend support to the supposition that all three triplet polypeptides are contained within each individual neurofilament.  相似文献   

5.
Early innervation of the metanephric kidney   总被引:2,自引:0,他引:2  
During kidney differentiation, the nephrogenic mesenchyme converts into renal tubules and the ureter bud branches to form the collecting system. Here we show that in the early undifferentiated kidney rudiment there is a third cell type present. In whole-mount preparations of cultured undifferentiated metanephric kidneys, neurones can be detected by immunohistochemical means with antibodies against the neurofilament triplet, 13AA8, and against neuronal cell surface gangliosides, Q211. Clusters of neuronal cell bodies can be seen in the mesenchyme close to the ureter bud. The terminal endings of neurites are found around the mesenchymal condensates that later become kidney tubules. A similar distribution of neurites can be revealed in tissue sections of kidney grafts growing in the chicken chorioallantoic membranes. In primary cultures of the ureter bud cells, neurones are constantly present. In another report, we have shown that, in experimental conditions, neurones are involved in regulation of kidney morphogenesis. The present results raise the possibility that neurones of the metanephric kidney may have this function in vivo as well.  相似文献   

6.
Abstract: The mesenchymal intermediate filament protein vimentin and the 70K component of neurofilament were detected by two-dimensional gel electrophoresis in cultures of pure sensory and sympathetic neurones derived from chick embryos. The identities of these neuronal intermediate filament proteins were confirmed by comparison of their molecular weights, isoelectric points, and peptide patterns from limited papain digestions with those of the corresponding proteins from fibroblasts and brain, respectively. A specific antibody to vimentin stained filamenteous structures and colcemid-induced coils in both neurones and associated satellite cells. In contrast, a specific antibody to the 70K neurofilament protein stained these structures solely in neurones. This neurone-specific staining, as well as its molecular weight and isoelectric point, distinguishes the 70K neurofilament protein from the 68K neurofilament as sociated protein described by others, which has been claimed to resemble the tubulin assembly protein.  相似文献   

7.
Neurofilament (NF) proteins (70K, 150K and 200K D) were isolated from 2 M urea extracts of bovine spinal cord by anion exchange chromatography. Antisera to the individual NF polypeptides were produced in rabbits and affinity-purified on Sepharose columns prepared with their own antigen. The NF antisera were completely absorbed by their own antigen at protein concentrations that did not decrease the staining when the absorption was conducted with the heterologous NF antigens. Partial absorption (decrease in immunofluorescence titer) occurred at higher concentrations of the heterologous antigens. Cross-reactivity between the polypeptides of the NF triplet could not be detected by double immunodiffusion. The antisera formed immunoprecipitin lines only when reacted with their own antigen. Conversely, cross-reactivity was demonstrated by the immune blotting procedure. Anti-70K stained all three NF polypeptides. Anti-200K and anti-150K stained both 200K and 150K but not 70K, the main reaction being with their own antigen. The antisera were rendered monospecific by adsorption of the common antigenic determinants on Sepharose columns prepared with the heterologous NF antigens. The localization of the NF proteins was studied by immunofluorescence on cryostat sections of rat brain, cerebellum, spinal cord and posterior root ganglia. All NF antisera (anti-70K, anti-150K and anti-200K) stained axons including Purkinje cell baskets with identical pattern. Spinal cord motor neurons, posterior root ganglia neurons and pyramidal neurons in the cerebral cortex stained with anti-70K and anti-200K. No staining of neuronal perikarya and dendrites was observed with anti-150K. Aluminium-induced neurofibrillary tangles in rabbit spinal cord stained with anti-70K and anti-200K. The tangles were not decorated by anti-150K. It is concluded that a marked difference exists in the concentration of 150K depending on the location, i.e., cell body or axon; or, alternatively, that 150K undergoes modification of antigenic sites within the axon so that it may not be recognized immunologically as a component of the neurofilament within perikarya and dendrites.  相似文献   

8.
Cell-type-specific antibodies have been used to follow the appearance of neurones and glia in the developing nervous system of the amphibian embryo. Differentiated neurones were recognized with antibodies against neurofilament protein while glial cells were identified with antibodies against glial fibrillary acidic protein (GFAP). The appearance of neurones containing the neurotransmitters 5-hydroxytryptamine and dopamine has been charted also. In Xenopus, neurofilament protein in developing neurones was observed occasionally at NF stage 21 and was present reliably in the neural tube and in caudal regions of the brain at stage 23. Antibodies to the low molecular weight fragment of the neurofilament triplet recognized early neurones most reliably. Radial glial cells, identified with GFAP antibody, were identified from stage 23 onwards in the neural tube and caudal regions of the brain. In the developing spinal cord, GFAP staining was apparent throughout the cytoplasm of each radial glial cell. In the brain, the peripheral region only of each glial cell contained GFAP. By stage 36, immunohistochemically recognizable neurones and glia were present throughout the nervous system. In the axolotl, by stage 36 the pattern of neural and glial staining was identical to that observed in Xenopus. GFAP staining of glial cells was obvious at stage 23, although neuronal staining was clearly absent. This implies that glial cells differentiate before neurones. 5-HT-containing cell bodies were first observed in caudal regions of the developing brain on either side of the midline at stage 26. An extensive network of 5-HT neurones appeared gradually, with a substantial subset crossing to the opposite side of the brain through the developing optic chiasma. 5,7-dihydroxytryptamine prevented the appearance of 5-HT. Depletion of 5-HT had little effect on development or swimming behaviour. Dopamine-containing neurones in the brain first differentiated at stage 35-36 and gradually increased in number up to stage 45-47, the latest stage examined. The functional role of 5-HT- or dopamine-containing neurones remains to be elucidated. We conclude that cell-type-specific antibodies can be used to identify neurones and glial cells at early times during neural development and may be useful tools in circumstances where functional identification is difficult.  相似文献   

9.
The three major proteins of mammalian neurofilaments of molecular weights 179,000 (NF1), 129,000 (NF2), and 66,500 (NF3) have been purified to homogeneity by multiple anion-exchange and hydroxylapatite absorption chromatography in 8 M urea. Silver staining of polyacrylamide gels of the purified proteins show single bands. In order to gain further insight into the molecular organization of the neurofilament triplet proteins, the molar stoichiometries and morphologies of native and reconstituted filaments and those isolated from developing brain were studied. Denaturing polyacrylamide gel electrophoresis followed by quantitative dye-binding analysis shows that the molar ratio of the three components in neurofilaments isolated from bovine spinal cord myelinated nerve is 4:2:1 (NF3:NF2:NF1). Comparison of the molar ratios of each component in neurofilaments isolated from rat, bovine, and human brain shows a variation in the ratio of each of these polypeptides and raises questions about the physiological uniqueness of the molar composition of the neurofilament triplet. Reconstitution of the three bovine polypeptides into 10-nm filaments was accomplished under conditions in which the NF3 protein was limiting. Reassembly of 10-nm filaments with varying amounts of NF2 and NF1 indicate that the NF3 homopolymer has a limiting capacity to bind NF2 and NF1 and is saturated at a molar ratio of 2:2:1 (NF3:NF2:NF1). Isolation of the neurofilament complex at various stages of rat brain maturation indicates that NF3 and NF2 are integrated into the neurofilament complex as early as embryonic day 17, while NF1 copurifies with these proteins at postnatal day 16, eventually reaching a molar stoichiometry of 2:2:1 in the adult rat. The molecular stoichiometry of the neurofilament proteins, the differential integration of these proteins during brain development, and the variation of the molar composition between mammalian species suggest accessory roles for the NF2 and NF1 proteins in the neurofilament complex.  相似文献   

10.
Summary Immunoreactivity for the neurofilament protein triplet was investigated in neurons of the dorsal root ganglia of the guinea-pig by using a battery of antibodies. In unfixed tissue, nearly all neurons in these ganglia demonstrated some degree of neurofilament protein triplet immunoreactivity. Large neurons generally displayed intense immunoreactivity, whereas most small to medium-sized neurons showed faint to moderate immunoreactivity. Double-labelling immunofluorescence demonstrated that most antibodies to the individual subunits of the neurofilament protein triplet had the same distribution and intensity of labelling in sensory neurons. Increasing durations of tissue fixation in aldehyde solutions selectively diminished neurofilament protein triplet immunoreactivity in small to medium-sized neurons. Double-labelling with neurofilament protein triplet antibodies in combination with antibodies to other neuronal markers, such as neuron-specific enolase, substance P and tyrosine hydroxylase, showed that tissue processing conditions affect the degree of co-localization of immunoreactivity to the neurofilament protein triplet and to these other neuronal markers. These results indicate that, with a judicious manipulation of the duration of tissue fixation, neurofilament protein triplet immunoreactivity can be used in combination with other neuronal markers to distinguish groups of neurons according to their size and chemical coding.  相似文献   

11.
Tetanus toxin (Tt) binding site and neurofilament (NIF), the intermediate-sized filaments, are neuronal markers essentially described in mammals and birds; are these molecular markers present in urodela neuronal cells and are they expressed immediately after neural induction? Our findings are based on immunofluorescent localization of NIF and Tt proteins using three previously characterized antisera against 200 kDa and 70 kDa neurofilament components and against fragment IIc derived from purified tetanus toxin. Embryonic undifferentiated neuronal cells from Pleurodeles waltlii neural plate and/or neural fold (early neurula stage) are cultured isolated in vitro without further chordamesodermal influence. At the beginning of the culture none of the undifferentiated neuronal precursors bind antibodies against NIF or Tt components. The binding is detected when phenotypical differentiation takes place (2/3-day cultures). Both the cell bodies and the cell processes are stained. After 2-3 weeks, immunostaining of the neurones is very distinctive and bright; the non-neuronal cultured cells do not exhibit any labelling. These observations indicate the early acquisition of NIF and Tt binding site expression by neuronal precursor cells (late gastrula stage).  相似文献   

12.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons.  相似文献   

13.
Summary Antisera to chicken brain antigen (CBA) isolated by hydroxyapatite chromatography from 8 M urea extracts following repeated extractions with phosphate buffer selectively decorate neurofilaments (NF) in neuronal perikarya, dendrites and axons. The antisera also reacted with GFA protein, the astrocyte-specific intermediate filament protein, as indicated by the adsorption of NF immunoreactivity following passage of the antisera through columns prepared with purified GFA protein. Moreover, the antisera stained the polypeptides of the NF triplet (70 kd, 150 kd, 200 kd) and GFA protein by the immunoblotting procedure. Monoclonal antibodies selectively decorating NF in tissue sections were isolated from a fusion of mouse myeloma cells with spleen cells of mice immunized with CBA. By the immunoblotting procedure the antibodies decorated the 150 kd NF polypeptide and GFA protein. No staining of glial filaments or any other structure on tissue sections was also observed with antibodies derived from another fusion strongly reacting with GFA protein on immunoblots. All antibodies (monoclonal and polyclonal) appeared to react with the same region of the GFA polypeptide as indicated by immunoblots of cleavage products.  相似文献   

14.
Abstract: Adenylate kinase (AK), which catalyzes the equilibrium reaction among AMP, ADP, and ATP, is considered to participate in the homeostasis of energy metabolism in cells. Among three vertebrate isozymes, AK isozyme 1 (AK1) is present prominently in the cytosol of skeletal muscle and brain. When mouse embryonal carcinoma P19 cells were differentiated by retinoic acid into neural cells, the amount of AK1 protein and enzyme activity increased about fivefold concomitantly with neurofilament (NF). Double-immunofluorescence staining showed that both AK1 and NF were located in neuronal processes as well as the perinuclear regions in neuron-like cells, but not in glia-like cells. The amount of brain-type creatine kinase increased only twofold during P19 differentiation. The AK isozyme 2, which was not detected in adult mouse brain, was found in P19 cells and did not increase during the differentiation. Mitochondrial AK isozyme 3, which uses GTP instead of ATP as a phosphate donor, was increased significantly. Immunohistochemical analysis with the primary cultured cells from rat cerebral cortex showed similar cellular localization of AK1 to those observed with differentiated P19 cells. These results suggest an important role of this enzyme in neuronal functions and in neuronal differentiation.  相似文献   

15.
The forms in which neurofilament (NF) subunits undergo axonal transport is controversial. Recent studies from have provided real-time visualization of the slow axonal transport of NF subunits by transfecting neuronal cultures with constructs encoding green fluorescent protein (GFP)-conjugated NF-M subunits. In our studies in differentiated NB2a/d1 cells, the majority NF subunits underwent transport in the form of punctate NF precursors, while studies in cultured neurons have demonstrated transport of NF subunits in predominantly filamentous form. Although different constructs were used in these studies, transfection of the same cultured neurons with our construct yielded the filamentous pattern observed by others, while transfection of our cultures with their construct generated punctate structures, confirming that the observed differences did not reflect variances in assembly-competence among the constructs. Manipulation of intracellular kinase, phosphatase, and protease activities shifted the predominant form of GFP-conjugated subunits between punctate and filamentous, confirming, as shown previously for vimentin, that punctate structures represent precursors for intermediate filament formation. Since these prior studies were conducted at markedly differing neuronal differentiation states, we tested the alternate hypothesis that these differing results reflected developmental alterations in NF dynamics that accompany various stages of neuritogenesis. We conducted time-course analyses of transfected NB2a/d1 cells, including monitoring of transfected cells over several days, as well as transfecting cells at varying intervals prior to and following induction of differentiation and axonal neurite outgrowth. GFP-conjugated subunits were predominantly filamentous during the period of most robust axonal outgrowth and NF accumulation, and presented a mixed profile of punctate and filamentous forms prior to neuritogenesis and following the developmental slowing of neurite outgrowth. These analyses demonstrate that NF subunits are capable of undergoing axonal transport in multiple forms, and that the predominant form in which NF subunits undergo axonal transport varies in accord with the rate of axonal elongation and accumulation of NFs within developing axons.  相似文献   

16.
17.
《The Journal of cell biology》1993,122(6):1323-1335
We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha- internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.  相似文献   

18.
A soluble isoelectric variant of the 150,000-dalton neurofilament protein was isolated from bovine brain by treating a partially purified filament preparation with a low-ionic-strength high-pH buffer. The protein (S150) had similar peptide maps to the neurofilament component of the same molecular weight (NF150) and was recognized by a polyclonal antibody made against the NF150 polypeptide. However, only half the anti-NF150 activity could be removed with the S150 protein. In addition, the S150 protein had a higher isoelectric point than the NF150 protein. Phosphate analysis indicated that the S150 protein was considerably lessened in phosphate content, which could account for the higher isoelectric point of the protein. It appears, therefore, that the S150 protein may be a precursor of NF150 or the result of phosphatase activity during the isolation procedure. Assembly studies showed that the S150 protein, unlike the NF150 protein, could not assemble with the 70-kDa neurofilament protein, indicating that the phosphate groups which were removed are important in the association of this protein to the neurofilament. When filaments containing all three triplet neurofilament polypeptides or those composed of the 70- and 150-kDa neurofilament proteins were subjected to acid phosphatase, a soluble fraction was obtained, which contained isoelectric variants with higher pI values than the NF150 polypeptide. Only unmodified NF150 protein was found in the insoluble fraction. These results support the argument that removal of phosphate groups results in the dissociation of this protein from the filament.  相似文献   

19.
We have used immunocytochemistry and in situ hybridization to examine the distribution of neuronal intermediate filament proteins and their mRNAs in the developing mouse cerebellum. First, we demonstrate that α-internexin is abundantly expressed in the developing cerebellum and is the only neuronal intermediate filament protein expressed in developing, including migrating, granule neurons. Second, in granule neuron reaggregates in vitro, α-internexin is the only neuronal intermediate filament protein highly expressed in the processes of the cultured granule neurons. This in vitro observation is consistent with results from immunocytochemistry and in situ hybridization studies of developing granule neurons in vivo, which suggest that α-internexin is the major neuronal intermediate filament protein in developing granule neurons. Finally, the neurofilament triplet proteins are expressed later, and coexist with α-internexin in other cells, including Purkinje cells and interneurons in the mature mouse cerebellum. These changes in neuronal intermediate filament composition may regulate neuronal maturation and axonal stability in cerebellar development. Furthermore, α-internexin may play a key role in neurite outgrowth and the establishment of neuronal cytoarchitecture. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Rat retina structure was studied between embryonic day 14 and adult with antibodies specific for vimentin, glial fibrillary acidic protein (GFA) and the proteins of the neurofilament triplet. Vimentin could be detected in radial processes throughout the retina at all stages studied. These processes are believed to correspond, in the developing retina, to ventriculocytes, and in the mature retina to Müller cells. They could not normally be stained with any of the other intermediate filament antibodies employed here. We did find, however, that some older albino rats possessed GFA staining in addition to vimentin in these processes. Since we never saw such staining in the retinae of mature non-albino rats, and the retinae of older albino rats often showed signs of degeneration, we concluded that such GFA expression was most likely pathological. Neurofilament protein-positive processes were first detectable at embryonic day 15 1/2 in the inner regions of the retina, and corresponded to the axons of retinal ganglion cells. Such processes were equivalently displayed with antibodies to 68 K and 145 K protein, but were negative with 200 K protein. Some 68 K and 145 K positive fibers could also be decorated with vimentin antibody at this stage, though at later stages this was not the case. At later development stages more 68 K and 145 K neurofilament positive processes appeared, and after the first post-natal week progressively more of such processes became in addition 200 K positive, so that almost all neurofilament positive fibers in the adult stained for all three proteins. Such fibers, in the mature retina corresponded to 68 K and 145 K positive optic nerve fibers, and the processes of neurones in the inner plexiform layer. All fibers in the mature optic nerve fiber layer, but not all of those in the inner plexiform layer were stainable with 200 K antibodies. At 4 days post-natal we were able to detect 68 K and 145 K protein positive profiles in the outer regions of the developing retina, the prospective outer plexiform layer. Such profiles were always in addition vimentin positive, but negative for 200 K protein. During further development such profiles became ordered into a well defined layer and from about post-natal day 13 all of them began to acquire 200 K protein. They could be identified as the processes of horizontal cells. They continued to express vimentin in addition to the three triplet proteins in the adult, a so far unprecedented situation. We were able to detect neurofilament staining in the mature retina only in the above described regions, the inner and outer nuclear layer and the photoreceptor processes being completely free of staining. GFA was first detected in short processes adjacent to the inner limiting membrane which penetrated the optic nerve fiber layer. Such profiles were first detectable in the eye of the newborn animal, and were invariably identically stainable with vimentin at this age. These profiles could be stained with both vimentin and GFA at all later stages examined, although GFA staining became very much stronger than vimentin staining in some profiles in the adult. The results presented here are discussed in terms of development of the different retinal cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号