首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
After seed germination, hydrolysis of storage proteins provides a nitrogen source for the developing seedling. In conifers the majority of these reserves are located in the living haploid megagametophyte tissue. In the developing loblolly pine (Pinus taeda L.) seedling an influx of free amino acids from the megagametophyte accompanies germination and early seedling growth. The major component of this amino acid pool is arginine, which is transported rapidly and efficiently to the seedling without prior conversion. This arginine accounts for nearly half of the total nitrogen entering the cotyledons and is likely a defining factor in early seedling nitrogen metabolism. In the seedling, the enzyme arginase is responsible for liberating nitrogen, in the form of ornithine and urea, from free arginine supplied by the megagametophyte. In this report we investigate how the seedling uses arginase to cope with the large arginine influx. As part of this work we have cloned an arginase cDNA from a loblolly pine expression library. Analysis of enzyme activity data, accumulation of arginase protein and mRNA abundance indicates that increased arginase activity after seed germination is due to de novo synthesis of the enzyme. Our results suggest that arginase is primarily regulated at the RNA level during loblolly pine seed germination and post-germinative growth.  相似文献   

2.
Todd CD  Gifford DJ 《Planta》2003,217(4):610-615
Following germination of loblolly pine (Pinus taeda L.) seeds, storage proteins in the embryo and megagametophyte are broken down to provide nitrogen, in the form of amino acids, to the developing seedling. A substantial portion of the free amino acids released in this process is arginine. Arginine is hydrolyzed in the cotyledons of the seedling by the enzyme arginase (EC 3.5.3.1), which is under developmental control. It has been shown previously that the seedling is able to initiate arginase gene expression in vitro in the absence of the megagametophyte, however, presence of the megagametophyte causes a greater accumulation of arginase protein and mRNA. Using an in vitro culture system we show that arginine itself may be responsible for up-regulating arginase activity. Application of exogenous arginine to cotyledons of seedlings germinated in the absence of the megagametophyte caused an increase in total shoot pole arginase activity as well as arginase specific activity. Arginine was also able to induce arginase mRNA accumulation in the same tissue.  相似文献   

3.
King JE  Gifford DJ 《Plant physiology》1997,113(4):1125-1135
The mobilization and utilization of the major storage proteins in loblolly pine (Pinus taeda L.) seeds following imbibition were investigated. Most of the seed protein reserves were contained within the megagametophyte. Breakdown of these proteins occurred primarily following radicle emergence and correlated with a substantial increase in the free amino acid pool in the seedling; the majority of this increase appeared to be the result of export from the megagametophyte. The megagametophyte was able to break down storage proteins and export free amino acids in the absence of the seedling. Arginine (Arg) was the most abundant amino acid among the principal storage proteins of the megagametophyte and was a major component of the free amino acid pools in both the seedling and the megagametophyte. The increase in free Arg coincided with a marked increase in arginase activity, mainly localized within the cotyledons and epicotyl of the seedling. Arginase activity was negligible in isolated seedlings. Experiments with phenylphosphorodiamidate, a urease inhibitor, supported the hypothesis that arginase participates in Arg metabolism in the seedling. The results of this study indicate that Arg could play an important role in the nutrition of loblolly pine during early seedling growth.  相似文献   

4.
5.
In germinated loblolly pine (Pinus taeda L.) seeds arginine accumulates in the seedling during its growth immediately following germination. The enzyme arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is responsible for hydrolyzing this arginine into ornithine and urea. Loblolly pine arginase was purified to homogeneity from seedling cotyledons by chromatographic separation on DE-52 cellulose, Matrex Green and arginine-linked Sepharose 4B. The enzyme was purified 148-fold and a single polypeptide band was identified as arginase. The molecular mass was determined to be 140 kDa by FPLC, while the subunit size was shown to be 37 kDa by SDS-PAGE, predicting a homotetramer holoprotein. Removal of manganese from the enzyme abolishes catalytic activity, which can be restored by incubating the protein with Mn2+. Antibodies, raised against the arginase subunit, are able to immunotitrate arginase activity and are monospecific for arginase on immunoblots.  相似文献   

6.
Conifer somatic embryo germination and early seedling growth are fundamentally different than in their zygotic counterparts in that the living maternal megagametophyte tissue surrounding the embryo is absent. The megagametophyte contains the majority of the seed storage reserves in loblolly pine and the lack of the megagametophyte tissue poses a significant challenge to somatic embryo germination and growth. We investigated the differences in seed storage reserves between loblolly pine mature zygotic embryos and somatic embryos that were capable of germination and early seedling growth. Somatic embryos utilized in this study contained significantly lower levels of triacylglycerol and higher levels of storage proteins relative to zygotic embryos. A shift in the ratio of soluble to insoluble protein present was also observed. Mature zygotic embryos had roughly a 3:2 ratio of soluble to insoluble protein whereas the somatic embryos contained over 5-fold more soluble protein compared to insoluble protein. This indicates that the somatic embryos are not only producing more protein overall, but that this protein is biased more heavily towards soluble protein, indicating possible differences in metabolic activity at the time of desiccation.  相似文献   

7.
8.
In hydrolysates of the eastern subterranean termite, Reticulitermes flavipes, the most abundant protein amino acids (μmoles) were glycine, alanine, and glutamic acid; the least abundant were methionine and histidine. Sawdust from both sound and Lenzites trabea-decayed sapwood blocks of sugar maple, loblolly pine, and slash pine was force-fed to termites. A diet of decayed rather than sound wood had little effect on protein amino acid composition of the termites; glycine content varied the most. In contrast, diet affected the free amino acid composition. Except for glutamic acid, the major protein amino acids of the termites were not the predominant free amino acids. Tyrosine and histidine were relatively more abundant as free than as protein amino acids. Greatest differences in protein amino acid compositions of sound and decayed wood were in contents of glycine, leucine, lysine, and arginine.  相似文献   

9.
10.
Catalase (EC 1.11.1.6) was purified to near homogeneity from isolated megagametophytes of germinated loblolly pine (Pinus taeda L.) seeds, and monospecific antibodies were elicited in rabbits. Following a procedure that involved acetone extraction, (NH4)2SO4 fractionation, and four chromatographic steps (i.e. DE-52 cellulose, Superdex-200, hydroxylapatite, and phenyl-Sepharose CL-4B), catalase was purified about 140-fold to a final specific activity of 2215 mmol min-1 mg-1 of protein. Cotton isocitrate lyase antibodies were used, and protein immunoblots revealed that the resolution on hydroxylapatite and phenyl-Sepharose allowed for the complete separation of catalase from contaminating isocitrate lyase. The molecular masses of the native enzyme and its subunit are 235 and 59 kD, respectively, indicating that the pine holoenzyme is a homotetramer. Loblolly pine catalase exists as multiple isoforms. When megagametophytes taken 7 d after imbibition at 30[deg]C were extracted, subjected to nondenaturing isoelectric focusing, and stained for catalase activity, at least four catalase isoforms were observed, including one dominant form with an isoelectric point of 6.87. Purified pine catalase is not a glycoprotein and has a ratio of absorbance at 208 nm to absorbance at 405 nm of 1.5. When probed with loblolly pine catalase antibodies, protein blots of cell-free extracts from megagametophytes of mature, stratified, and germinated loblolly pine seeds, the megagametophyte glyoxysomal fraction, and purified loblolly pine catalase all revealed one immunoreactive 59-kD polypeptide. This indicates that no detectable change in the enzyme's monomeric molecular mass occurs during seed stratification and germination, early seedling growth, and purification.  相似文献   

11.
12.
Two types of structurally distinct O-methyltransferases mediate the methylation of hydroxylated monomeric lignin precursors in angiosperms. Caffeate 3-O-methyltransferase (COMT; EC 2.1.1.68) methylates the free acids and caffeoyl CoA 3-O-methyltransferase (CCoAOMT; EC 2.1.1.104) methylates coenzyme A esters. Recently, we reported a novel hydroxycinnamic acid/hydroxycinnamoyl CoA ester O-methyltransferase (AEOMT) from loblolly pine differentiating xylem that was capable of methylating both acid and ester precursors with similar efficiency. In order to determine the possible existence and role of CCoAOMT in lignin biosynthesis in gymnosperms, a 1.3 kb CCoAOMT cDNA was isolated from loblolly pine that showed 79–82% amino acid sequence identity with many angiosperm CCoAOMTs. The recombinant CCoAOMT expressed in Escherichia coli exhibited a significant methylating activity with hydroxycinnamoyl CoA esters whereas activity with hydroxycinnamic acids was insignificant. Moreover, 3.2 times higher catalytic efficiency for methylating caffeoyl CoA over 5-hydroxyferuloyl CoA was observed which could serve as a driving force towards synthesis of guaiacyl lignin. The secondary xylem-specific expression of CCoAOMT was demonstrated using RNA blot analysis, western blot analysis, and O-methyltransferase enzyme assays. In addition, Southern blot analysis indicated that CCoAOMT may exist as a single-copy gene in loblolly pine genome. The transgenic tobacco plants carrying loblolly pine CCoAOMT promoter-GUS fusion localized the site of GUS activity at the secondary xylem tissues. These data suggest that CCoAOMT, in addition to AEOMT, plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine.  相似文献   

13.
The storage and remobilization of nitrogen in deciduous and evergreen species is a major source of N, supporting the seasonal growth of trees. In evergreens, in addition to wood and roots, older leaves are important reservoirs of N used in the growth of new foliage. Just before bud burst, when transpiration is inactive or low, and when uptake of nitrogen by the roots may be restricted due to low temperatures, levels of organic N in the xylem are high. Amino acids usually comprise the bulk of this organic N. Changes in amino acid concentrations in early spring are thought to result mainly from hydrolysis of N reserves, and not from current N uptake. The seasonal profiles of amino acids in the xylem sap of Quercus ilex, an evergreen Mediterranean tree, were investigated. The first amino acid detected in the xylem sap before spring was ornithine, which may result from the breakdown of arginine present in storage proteins. Arginine is one of the main amino acids present in storage proteins because each arginine molecule has four nitrogen atoms. When protein degradation increases the free arginine pool, the arginase activity is enhanced and, consequently, the conversion of arginine to ornithine. It seems that ornithine has an important role in N transport early in the growth season of Q. ilex.  相似文献   

14.
Arginase Is Inoperative in Developing Soybean Embryos   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

15.
16.
17.
The gene encoding the monolignol biosynthetic enzyme cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195) can be expressed in response to different developmental and environmental cues. Control of Cad gene expression could involve either differential regulation of more than one Cad gene or, alternatively combinatorial regulation of a single Cad gene. In loblolly pine (Pinus taeda L.), we found several electrophoretic variants (allozymes) of CAD and a high level of heterozygosity (he=0.46). Analysis of inheritance patterns of pine CAD allozymes gave segregation ratios that were consistent with Mendelian expectations for a single functional gene. The identity of the full-length Cad cDNA sequence was confirmed by alignment with peptide sequences obtained from purified active enzyme and by extensive similarity to Cad sequences from other species. Southern blot analysis of genomic DNA using the Cad cDNA as a hybridization probe gave simple patterns, consistent with our interpretation that pine Cad is a single-copy gene. Phylogenetic analysis and evolution rate estimates showed that Cad sequences are diverging less rapidly in the gymnosperms than in the angiosperms. The Cad mRNA was present in both lignifying tissues and a non lignifying tissue (the megagametophyte) of pine. The presence of a single gene suggests that different regulatory mechanisms for a single Cad gene, rather than differential regulation of several genes, can account for its expression in response to different cues.  相似文献   

18.
Arginine is a semi-essential amino acid that plays an important role in the regulation of metabolic processes associated with several pathological/physiological conditions. In the vasculature, it mainly exerts its biological functions as a substrate of two alternative pathways: the conversion to nitric oxide (NO) by nitric oxide synthase (NOS) and the breakdown to urea and ornithine by arginase. To determine arginine metabolism, in the current study we propose an original radiochemical technique that allows the simultaneous monitoring of NOS and arginase activation within intact cells. Taking advantage of this method, we show here the consequences of different experimental conditions known to modulate endothelial homeostasis on arginine metabolism.  相似文献   

19.
20.
Changes in the patterns of gene expression were examined during loblolly pine ( Pinus taeda L.) seed stratification, germination, and post-germinative growth. In both the megagametophyte and the embryo, DNA contents remained relatively constant at all stages examined. RNA contents, however, increased in both tissues following seed germination, particularly in the embryo where a 7-fold increase in the RNA content was observed 5 days after germination. Poly(A)+ RNA, extracted from megagametophytes and embryos, was translated in vitro in a rabbit reticulocyte lysate cell-free system. Analysis of [35S]-methionine-labelled translation products by two-dimensional electrophoresis/fluorography indicated that there were changes in the populations of mRNAs during all developmental stages examined. In both the megagametophyte and the embryo several distinct mRNA populations, including one constitutively present at all stages examined, were identified. One mRNA population, present in the mature seed, decreased during seed stratification. Another population, not present in the mature seed, rose during the period of stratification that coincided with an increase in seed germinability. A third population, which appeared during seed germination, increased steadily during post-germinative growth. Besides these similarities, specific differences between megagametophyte and embryo were noted. For example, one mRNA population, which was present in the megagametophyte of the mature seed and remained constant during the stratification period, disappeared immediately following seed germination. In the embryo, one set of messages was germination specific. In total, these results show that mRNA populations change in a temporal fashion that is consistent with the patterns of de novo protein synthesis known to occur in loblolly pine during the same developmental periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号