首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replicated lines of Drosophila melanogaster were allowed to evolve in population cage culture at 16.5° C or 25° C for five years. Their larval and pupal development times, larval growth rates, larval critical weights for pupariation and pre-adult survival rates were then measured at both temperatures. Pre-adult survival showed evidence of adaptation of the lines to their thermal selection regimes, with each set of lines showing superior survival when tested at the temperature at which they had been evolving. Pupal periods were similar for all lines when growing at 16.5° C but, at 25° C, the low temperature lines had the longer pupal periods. Irrespective of experimental temperature, low temperature lines grew faster and had shorter larval development periods than the high temperature lines. Larval critical weights for pupariation were higher in the low temperature lines at the low experimental temperature, and higher in the high temperature lines at the higher experimental temperature. The correlations between these traits induced by thermal evolution were in general different from or opposite to the genetic correlations found within a single temperature.  相似文献   

2.
The aim of this study was to examine the latitudinal variation in preadult competitive ability of Drosophila melanogaster. Two pairs of populations from Queensland and Tasmania, Australia, were examined. Queensland flies are genetically smaller and develop more slowly than the Tasmanian flies. Survival and body size of flies raised at different temperatures and densities were compared when larvae were challenged with a common competitor. No latitudinal variation in larval survival was detected. Body size (measured as wing length) decreased with increasing temperature and larval density. Flies from the Tasmanian populations were more sensitive to the effects of temperature and density and to the joint effect of increased temperature and density. This could explain the evolution of greater growth efficiency and larger body size at lower temperatures.  相似文献   

3.
In this study, we investigate the effect of local adaptation to developmental density on male mating success in laboratory populations of Drosophila melanogaster. Mating success is known to be influenced by body condition which can in turn be influenced by local adaptation. We test the hypothesis that males adapted to a given environment have higher mating success when assayed in that environment. We used males selected for adaptation to high larval density and their controls which are reared at low larval density. We grew assay males in low and high densities whereas the focal females (raised at low larval density) used for the experiment belonged to the common ancestor of selected and control populations. We considered selected males grown at high density and control males grown at low density as ‘adapted’. Similarly, we considered selected males grown at low density and control males grown at high density as ‘nonadapted’. Selected male belonging to a given treatment (larval density) was made to compete with control male of the same treatment for mating with ancestral female. We quantified components of reproductive fitness: mating latency, copulation duration, mating success and number of progeny sired by the ‘adapted’ and ‘nonadapted’ males. The results show that local adaptation does not lead to higher mating success in populations adapted to their own larval rearing environment.  相似文献   

4.
5.
6.
Both strong directional selection and faster development are thought to destabilize development, giving rise to greater fluctuating asymmetry (FA), although there is no strong empirical evidence supporting this assertion. We compared FA in sternopleural bristle number in four populations ofDrosophila melanogaster successfully selected for faster development from egg to adult, and in four control populations. The fraction of perfectly symmetric individuals was higher in the selected populations, whereas the FA levels did not differ significantly between selected and control populations, clearly indicating that directional selection for faster development has not led to increased FA in sternopleural bristle number in these populations. This may be because: (i) development time and FA are uncorrelated, (ii) faster development does result in FA, but selection has favoured developmentally stable individuals that can develop fast and still be symmetrical, or (iii) the increased fraction of symmetric individuals in the selected populations is an artifact of reduced body size. Although we cannot discriminate among these explanations, our results suggest that the relationship between development time, FA and fitness may be far more subtle than often thought.  相似文献   

7.
Sperm displacement has been the subject of a large number of evolutionary studies because of its effects on relative male reproductive success. To understand better the evolutionary role of variation in sperm displacement ability (SDA), an obvious aim is to measure its heritability. In this paper, we show that a standard method used to measure the heritability of SDA can be misleading. First, we show that using conventional methods (based on counts of adult offspring of multiply mated females), SDA appears to be heritable. However, an examination of potentially confounding variables strongly suggests that this result is misleading, and that the heritable component is more likely to be pre-adult viability. Consequently, it is likely that there is little measurable heritable genetic variation for SDA in D. melanogaster. We conclude that, although conventional methods of measuring sperm displacement will usually be adequate for phenotypic measurements, greater care must be taken when measuring genetic variances.  相似文献   

8.
Although, circadian clocks are believed to be involved in the regulation of life-history traits such as pre-adult development time and lifespan in fruit flies Drosophila melanogaster, there is very little unequivocal evidence either to support or refute this. Here we report the results of a long-term study aimed at examining the role of circadian clocks in the temporal regulation of pre-adult development in D. melanogaster. We employed laboratory selection protocol for faster pre-adult development on four large, outbred, random mating populations of Drosophila. We assayed pre-adult development time and circadian period of locomotor activity rhythm of these flies at regular intervals of 5–10 generations. After 50 generations of selection, the overall egg-to-adult duration in the selected stocks was reduced by ~29 h (~12.5 %) relative to controls, with the selected populations showing a concurrent reduction in time taken to hatching, pupation and wing pigmentation, by ~2, ~16, and ~25.2 h, respectively. Furthermore, selected populations showed a concomitant reduction in the circadian period of locomotor activity rhythm, implying that circadian clocks and development time are correlated. Thus, our study provides the first ever unequivocal evidence for the evolution of circadian clocks as a correlated response to selection for faster pre-adult development, suggesting that circadian clocks and development are linked in fruit flies D. melanogaster.  相似文献   

9.
The influence of endosymbiotic bacterium Wolbachia on the recombination processes in the sex chromosome of Drosophila melanogaster on the region between white and cut genes has been studied. The analysis of the crossing-over frequency in various variants of strain crossing, infected and noninfected, with bacteria has been carried out. The results have shown the absence of the influence of infection with Wolbachia on the frequency of crossing-over in the studied region of the X chromosome of D. melanogaster.  相似文献   

10.

Background  

Circadian clocks have been implicated in the regulation of pre-adult development of fruit flies Drosophila melanogaster. It is believed that faster clocks speed up development and slower clocks slow it down. We established three sets of D. melanogaster populations (early, control and late). The early and late populations were raised by selecting for flies that emerged either in the morning or in the evening under 12:12 hr light/dark (LD) cycles. After 75 generations of selection, the time course and waveform of the adult emergence and activity rhythms of the early and the late populations diverged from each other as well as from the controls. In this paper, we report the consequence of this selection on the rate of pre-adult development.  相似文献   

11.
12.
13.
Abstract.— Offspring of close relatives often suffer severe fitness consequences. Previous studies have demonstrated that females, when given a choice, will choose to avoid mating with closely related males. But where opportunities for mate choice are limited or kin recognition is absent, precopulatory mechanisms may not work. In this case, either sex could reduce the risks of inbreeding through mechanisms that occur during or after copulation. During mating, males or females could commit fewer gametes when mating with a close relative. After mating, females could offset the effects of mating with a closely related male through cryptic choice. Few prior studies of sperm competition have examined the effect of genetic similarity, however, and what studies do exist have yielded equivocal results. In an effort to resolve this issue, we measured the outcome of sperm competition when female Drosophila melanogaster were mated to males of four different degrees of genetic relatedness and then to a standardized competitor. We provide the strongest evidence to date that sperm competitive ability is negatively correlated with relatedness, even after controlling for inbreeding depression.  相似文献   

14.
For some genes, the epigenetic state (whether they are expressed) depends on whether the gene is inherited through the mother or the father. Such imprinting, or parent-specific gene expression (PSGE), occurs in mammals, including humans, and higher plants. The theory that PSGE solves genetic conflict between mother and father is widely accepted. We argue, however, that the conditions for PSGE to evolve are restricted. With respect to seed size, PSGE can only evolve when the developing offspring has a strong effect on its own resource acquisition. When seed size is close to the optimum for the maternal parent, there is no internal conflict in the offspring because maternally and paternally derived genes both favour increased seed size. Although the literature generally suggests that the maternal parent controls seed size, a number of observations suggest an additional role for the paternal parent. Here, we critically evaluate these studies and suggest a rigorous methodology for establishing paternal effects on seed size, which can be applied to the model species Arabidopsis thaliana.  相似文献   

15.
Female Drosophila melanogaster frequently mate with multiple males, and the success of a given male depends not only on his genotype but also on the genotype of his competitor. Here, we assess how natural genetic variation affects male–male interactions for traits influencing pre‐ and postcopulatory sexual selection. Males from a set of 66 chromosome substitution lines were competed against each other in a ‘round‐robin’ design, and paternity was scored using bulk genotyping. We observed significant effects of the genotype of the first male to mate, the second male to mate and an interaction between the males for measures of male mating rate and sperm utilization. We also identified specific combinations of males who show nontransitive patterns of reproductive success and engage in ‘rock‐paper‐scissors’ games. We then tested for associations between 245 polymorphisms in 32 candidate male reproductive genes and male reproductive success. We identified eight polymorphisms in six reproductive genes that associate with male reproductive success independent of the competitor (experimentwise < 0.05). We also identified four SNPs in four different genes where the relative reproductive success of the alternative alleles changes depending on the competing males' genetic background (experimentwise < 0.05); two of these associations include premature stop codons. This may be the first study that identifies the genes contributing to nontransitivity among males and further highlights that ‘rock‐paper‐scissors’ games could be an important evolutionary force maintaining genetic variation in natural populations.  相似文献   

16.
17.
Drosophila melanogaster can be artificially selected for increased resistance against parasitoid wasps that attack the larvae. Lines selected for greater resistance are poorer larval competitors under conditions of resource scarcity. Here we investigated the mechanistic basis of this apparent trade-off. We found that resistant lines have approximately twice the density of haemocytes (blood cells) than that of controls. Haemocytes are involved in encapsulation, the chief cellular immune defence against parasitoids. We have previously shown that resistant lines feed more slowly than controls and hypothesize that limiting resources are being switched from trophic to defensive functions.  相似文献   

18.
Some fitness components of Drosophila melanogaster and D. simulans were measured in control and inter-specific competition tests. The effects derived from different relative frequencies of the competitors were examined under a factorial scheme with two temperatures, 21 °C or room temperature, and with adults developed in mixed- or pure-species cultures. D. melanogaster appeared as a strong competitor and outnumbered D. simulans in all the culture conditions. This was because intraspecific competition was stronger than inter-specific competition for D. melanogaster whereas the reverse occurred for D. simulans. In competition, the productivity of both species generally appeared as frequency-dependent, although density-dependent productivity seems to be a more accurate explanation. D. simulans was very sensitive to variations of laboratory conditions. Room temperature and previous development with D. melanogaster were more favorable for D. simulans than 21 °C and previous development in pure cultures. These factors did not substantially affect D. melanogaster, which showed a greater ability of adaptation to laboratory conditions than its sibling D. simulans.  相似文献   

19.
The effects of royal jelly (RJ) appear to be conserved in Drosophila; flies exposed of RJ exhibit increased body size, similar to queen bees. However, in flies and bees, there is evidence that increased body size can lead to impairments to locomotor activity, while RJ may have anti-fatigue properties. Canton-S and Oregon-R Drosophila larvae were raised on media containing 0% or 20% pure RJ. Climbing assays were conducted to assess vertical locomotion. Circadian locomotion was observed using Drosophila Activity Monitors. CS, but not Or-R, raised on RJ were larger compared to controls. Flies exposed to RJ exhibited entrainment and free-running rhythms. The increased size due to RJ exposure in this study had no bearing on circadian locomotor activity or climbing. These results indicate that there is variation among physiological responses to RJ among different strains, but RJ was equally ineffective in affecting locomotor behavior no matter the physiological response.  相似文献   

20.
The tradeoff between colonization and competitive ability has been proposed as a mechanism for ecological succession, and this tradeoff has been demonstrated in multiple successional communities. The tradeoff between competitive ability and predation resistance is also a widely-described phenomenon; however, this tradeoff is not usually postulated as a cause of ecological succession. Early successional species that arrive before predator colonization could be either (1) less vulnerable to predation than their successors, by virtue of being poor competitors (direct competition-predation tradeoff); or (2) equally or more vulnerable to predation, because they normally colonize ahead of predators in succession and therefore are not evolutionarily adapted to avoid predators that they rarely encounter (no competition–predation tradeoff). To test these alternative hypotheses, we established water-filled containers in an oak–hickory forest. We allowed half of the containers to be naturally colonized by early-successional Culex mosquitoes, mid-successional Aedes mosquitoes, and the mosquito predator Toxorhynchites rutilus. In the other half of the containers, we prevented Aedes colonization via systematic removal of Aedes eggs, but allowed Culex and T. rutilus to colonize. The numbers of mature Culex larvae and pupae, and later the total number of Culex, were significantly greater in containers where Aedes had been removed, which suggests that Culex are competitively suppressed by Aedes. Toxorhynchites rutilus abundance and colonization rate were unaffected by the removal of Aedes, and densities of both Culex and Aedes decreased significantly with T. rutilus abundance in both treatments. In-laboratory bioassays showed that Culex were significantly more vulnerable to predation by T. rutilus than were Aedes. These data are consistent with the hypothesis that Culex and Aedes demonstrate a direct colonization–competition tradeoff, and are inconsistent with the hypothesis of a direct competition–predation tradeoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号