首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V(D)J recombination is instigated by the recombination-activating proteins RAG1 and RAG2, which catalyze site-specific DNA cleavage at the border of the recombination signal sequence (RSS). Although both proteins are required for activity, core RAG1 (the catalytically active region containing residues 384-1008 of 1040) alone displays binding specificity for the conserved heptamer and nonamer sequences of the RSS. The nonamer-binding region lies near the N terminus of core RAG1, whereas the heptamer-binding region has not been identified. Here, potential domains within core RAG1 were identified using limited proteolysis studies. An iterative procedure of DNA cloning, protein expression, and characterization revealed the presence of two topologically independent domains within core RAG1, referred to as the central domain (residues 528-760) and the C-terminal domain (residues 761-980). The domains do not include the nonamer-binding region but rather largely span the remaining relatively uncharacterized region of core RAG1. Characterization of macromolecular interactions revealed that the central domain bound to the RSS with specificity for the heptamer and contained the predominant binding site for RAG2. The C-terminal domain bound DNA cooperatively but did not show specificity for either conserved RSS element. This domain was also found to self-associate, implicating it as a dimerization domain within RAG1.  相似文献   

2.
RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.  相似文献   

3.
The RAG proteins initiate V(D)J recombination by mediating synapsis and cleavage of two different antigen receptor gene segments through interactions with their flanking recombination signal sequences (RSS). The protein–DNA complexes that support this process have mainly been studied using RAG–RSS complexes assembled using oligonucleotide substrates containing a single RSS that are paired in trans to promote synapsis. How closely these complexes model those formed on longer, more physiologically relevant substrates containing RSSs on the same DNA molecule (in cis) remains unclear. To address this issue, we characterized discrete core and full-length RAG protein complexes bound to RSSs paired in cis. We find these complexes support cleavage activity regulated by V(D)J recombination's ‘12/23 rule’ and exhibit plasticity in RSS usage dependent on partner RSS composition. DNA footprinting studies suggest that the RAG proteins in these complexes mediate more extensive contact with sequences flanking the RSS than previously observed, some of which are enhanced by full-length RAG1, and associated with synapsis and efficient RSS cleavage. Finally, we demonstrate that the RAG1 C-terminus facilitates hairpin formation on long DNA substrates, and full-length RAG1 promotes hairpin retention in the postcleavage RAG complex. These results provide new insights into the mechanism of physiological V(D)J recombination.  相似文献   

4.
Central to understanding the process of V(D)J recombination is appreciation of the protein–DNA complex which assembles on the recombination signal sequences (RSS). In addition to RAG1 and RAG2, the protein HMG1 is known to stimulate the efficiency of the cleavage reaction. Using electrophoretic mobility shift analysis we show that HMG1 stimulates the in vitro assembly of a stable complex with the RAG proteins on each RSS. We use UV crosslinking studies of this complex with azido-phenacyl derivatized probes to map the contact sites between the RAG proteins, HMG1 derivatives and the RSS. We find that the RAG proteins make contacts at the nonamer, heptamer and adjacent coding region. The HMG1 protein by itself appears to localize at the 3′ side of the nonamer, but a cooperative complex with the RAG proteins is positioned at the 3′ side of the heptamer and adjacent spacer in the 12RSS. In the complex with RAG proteins, HMG1 is positioned primarily in the spacer of the 23RSS. We suggest that bends introduced into these DNA substrates at specific locations by the RAG proteins and HMG1 may help distinguish the 12RSS from the 23RSS and may therefore play an important role in the coordinated reaction.  相似文献   

5.
It has been suggested that DNA methylation/demethylation is involved in regulating V(D)J rearrangement. Although methylated DNA is thought to induce an inaccessible chromatin structure, it is unclear whether DNA methylation can directly control V(D)J recombination independently of chromatin structure. In this study, we tested whether DNA methylation directly affects the reactivity of the RAG1/RAG2 complex. Specific methylation within the heptamer of the recombination signal sequences (RSS) markedly reduced V(D)J cleavage without inhibiting RAG1/RAG2–DNA complex formation. By contrast, methylation at other positions around the RSS did not affect the reactivity of the RAG proteins. The presence of a methyl-CpG binding-domain protein inhibited the binding of the RAG1/RAG2 complex to all the methylated CpG sites that were tested. Our findings suggest that DNA methylation around the RSS may have a previously unexpected function in regulating V(D)J recombination by directly inhibiting V(D)J cleavage, in addition to its general function of inducing an inaccessible chromatin configuration.  相似文献   

6.
The RAG endonuclease consists of RAG1, which contains the active site for DNA cleavage, and RAG2, an accessory factor whose interaction with RAG1 is critical for catalytic function. How RAG2 activates RAG1 is not understood. Here, we used biolayer interferometry and pulldown assays to identify regions of RAG1 necessary for interaction with RAG2 and to measure the RAG1-RAG2 binding affinity (KD ∼0.4 μm) (where RAG1 and RAG2 are recombination activating genes 1 or 2). Using the Hermes transposase as a guide, we constructed a 36-kDa “mini” RAG1 capable of interacting robustly with RAG2. Mini-RAG1 consists primarily of the catalytic center and the residues N-terminal to it, but it lacks a zinc finger region in RAG1 previously implicated in binding RAG2. The ability of Mini-RAG1 to interact with RAG2 depends on a predicted α-helix (amino acids 997–1008) near the RAG1 C terminus and a region of RAG1 from amino acids 479 to 559. Two adjacent acidic amino acids in this region (Asp-546 and Glu-547) are important for both the RAG1-RAG2 interaction and recombination activity, with Asp-546 of particular importance. Structural modeling of Mini-RAG1 suggests that Asp-546/Glu-547 lie near the predicted 997-1008 α-helix and components of the active site, raising the possibility that RAG2 binding alters the structure of the RAG1 active site. Quantitative Western blotting allowed us to estimate that mouse thymocytes contain on average ∼1,800 monomers of RAG1 and ∼15,000 molecules of RAG2, implying that nuclear concentrations of RAG1 and RAG2 are below the KD value for their interaction, which could help limit off-target RAG activity.  相似文献   

7.
During V(D)J recombination, recombination activating gene (RAG)1 and RAG2 bind and cleave recombination signal sequences (RSSs), aided by the ubiquitous DNA-binding/-bending proteins high-mobility group box protein (HMGB)1 or HMGB2. HMGB1/2 play a critical, although poorly understood, role in vitro in the assembly of functional RAG–RSS complexes, into which HMGB1/2 stably incorporate. The mechanism of HMGB1/2 recruitment is unknown, although an interaction with RAG1 has been suggested. Here, we report data demonstrating only a weak HMGB1–RAG1 interaction in the absence of DNA in several assays, including fluorescence anisotropy experiments using a novel Alexa488-labeled HMGB1 protein. Addition of DNA to RAG1 and HMGB1 in fluorescence anisotropy experiments, however, results in a substantial increase in complex formation, indicating a synergistic binding effect. Pulldown experiments confirmed these results, as HMGB1 was recruited to a RAG1–DNA complex in a RAG1 concentration-dependent manner and, interestingly, without strict RSS sequence specificity. Our finding that HMGB1 binds more tightly to a RAG1–DNA complex over RAG1 or DNA alone provides an explanation for the stable integration of this typically transient architectural protein in the V(D)J recombinase complex throughout recombination. These findings also have implications for the order of events during RAG–DNA complex assembly and for the stabilization of sequence-specific and non-specific RAG1–DNA interactions.  相似文献   

8.
The RAG1 and RAG2 proteins together constitute the nuclease that initiates the assembly of immunoglobulin and T cell receptor genes in a reaction known as V(D)J recombination. RAG1 plays a central role in recognition of the recombination signal sequence (RSS) by the RAG1/2 complex. To investigate the parameters governing the RAG1-RSS interaction, the murine core RAG1 protein (amino acids 377-1008) fused to a short Strep tag has been purified to homogeneity from bacteria. The Strep-RAG1 (StrRAG1) protein exists as a dimer at a wide range of protein concentrations (25-500 nM) in the absence of DNA and binds with reasonably high affinity and specificity (apparent K(D) = 41 nM) to the RSS. Both electrophoretic mobility shift assays and polarization anisotropy experiments indicate that only a single StrRAG1-DNA species exists in solution. Anisotropy decay measured by frequency domain spectroscopy suggests that the complex contains a dimer of StrRAG1 bound to a single DNA molecule. Using measurements of protein intrinsic fluorescence and circular dichroism, we demonstrate that StrRAG1 undergoes a major conformational change upon binding the RSS. Steady-state fluorescence and acrylamide quenching studies reveal that this conformational change is associated with a repositioning of intrinsic protein fluorophores from a hydrophobic to a solvent-exposed environment. RSS-induced conformational changes of StrRAG1 may influence the interaction of RAG1 with RAG2 and synaptic complex formation.  相似文献   

9.
V(D)J recombination is initiated by RAG1 and RAG2, which together with HMGB1 bind to a recombination signal sequence (12RSS or 23RSS) to form the signal complex (SC) and then capture a complementary partner RSS, yielding the paired complex (PC). Little is known regarding the structural changes that accompany the SC to PC transition or the structural features that allow RAG to distinguish its two asymmetric substrates. To address these issues, we analyzed the structure of the 12RSS in the SC and PC using fluorescence resonance energy transfer (FRET) and molecular dynamics modeling. The resulting models indicate that the 12RSS adopts a strongly bent V-shaped structure upon RAG/HMGB1 binding and reveal structural differences, particularly near the heptamer, between the 12RSS in the SC and PC. Comparison of models of the 12RSS and 23RSS in the PC reveals broadly similar shapes but a distinct number and location of DNA bends as well as a smaller central cavity for the 12RSS. These findings provide the most detailed view yet of the 12RSS in RAG–DNA complexes and highlight structural features of the RSS that might underlie activation of RAG-mediated cleavage and substrate asymmetry important for the 12/23 rule of V(D)J recombination.  相似文献   

10.
RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double strand breaks between each selected gene segment and its bordering recombination signal sequence (RSS) in a two-step mechanism in which the DNA is first nicked, followed by hairpin formation. The RSS consists of a conserved nonamer and heptamer sequence, in which the latter borders the site of DNA cleavage. A region within RAG1, referred to as the central domain (residues 528-760 of 1040 in the full-length protein), has been shown previously to bind specifically to the double-stranded (ds) RSS heptamer, but with both weak specificity and affinity. However, additional investigations into the RAG1-RSS heptamer interaction are required because the DNA substrate forms intermediate conformations during the V(D)J recombination reaction. These include the nicked and hairpin products, as well as likely base unpairing to produce single-stranded (ss) DNA near the cleavage site. Here, it was determined that although the central domain showed substantially higher binding affinity for ss and nicked versus ds substrate, the interaction with ss RSS was particularly robust. In addition, the central domain bound with greater sequence specificity to the ss RSS heptamer than to the ds form. This study provides important insight into the V(D)J recombination reaction, specifically that significant interaction of the RSS heptamer with RAG1 occurs only after the induction of conformational changes at the RSS heptamer.  相似文献   

11.
During V(D)J recombination, recombination activating gene proteins RAG1 and RAG2 generate DNA double strand breaks within a paired complex (PC) containing two complementary recombination signal sequences (RSSs), the 12RSS and 23RSS, which differ in the length of the spacer separating heptamer and nonamer elements. Despite the central role of the PC in V(D)J recombination, little is understood about its structure. Here, we use fluorescence resonance energy transfer to investigate the architecture of the 23RSS in the PC. Energy transfer was detected in 23RSS substrates in which the donor and acceptor fluorophores flanked the entire RSS, and was optimal under conditions that yield a cleavage-competent PC. The data are most easily explained by a dramatic bend in the 23RSS that reduces the distance between these flanking regions from >160 Å in the linear substrate to <80 Å in the PC. Analysis of multiple fluorescent substrates together with molecular dynamics modeling yielded a model in which the 23RSS adopts a U shape in the PC, with the spacer located centrally within the bend. We propose that this large bend facilitates simultaneous recognition of the heptamer and nonamer, is critical for proper positioning of the active site and contributes to the 12/23 rule.  相似文献   

12.
RAG1 and RAG2 proteins catalyze site-specific DNA cleavage reactions in V(D)J recombination, a process that assembles antigen receptor genes from component gene segments during lymphocyte development. The first step towards the DNA cleavage reaction is the sequence-specific association of the RAG proteins with the conserved recombination signal sequence (RSS), which flanks each gene segment in the antigen receptor loci. Questions remain as to the contribution of each RAG protein to recognition of the RSS. For example, while RAG1 alone is capable of recognizing the conserved elements of the RSS, it is not clear if or how RAG2 may enhance sequence-specific associations with the RSS. To shed light on this issue, we examined the association of RAG1, with and without RAG2, with consensus RSS versus non-RSS substrates using fluorescence anisotropy and gel mobility shift assays. The results indicate that while RAG1 can recognize the RSS, the sequence-specific interaction under physiological conditions is masked by a high-affinity non-sequence-specific DNA binding mode. Significantly, addition of RAG2 effectively suppressed the association of RAG1 with non-sequence-specific DNA, resulting in a large differential in binding affinity for the RSS versus the non-RSS sites. We conclude that this represents a major means by which RAG2 contributes to the initial recognition of the RSS and that, therefore, association of RAG1 with RAG2 is required for effective interactions with the RSS in developing lymphocytes.  相似文献   

13.
Pavlicek JW  Lyubchenko YL  Chang Y 《Biochemistry》2008,47(43):11204-11211
During V(D)J recombination, site specific DNA excision is dictated by the binding of RAG1/2 proteins to the conserved recombination signal sequence (RSS) within the genome. The interaction between RAG1/2 and RSS is thought to involve a large DNA distortion that is permissive for DNA cleavage. In this study, using atomic force microscopy imaging (AFM), we analyzed individual RAG-RSS complexes, in which the bending angle of RAG-associated RSS substrates could be visualized and quantified. We provided the quantitative measurement on the conformations of specific RAG-12RSS complexes. Previous data indicating the necessity of RAG2 for recombination implies a structural role in the RAG-RSS complex. Surprisingly, however, no significant difference was observed in conformational bending with AFM between RAG1-12RSS and RAG1/2-12RSS. RAG1 was found sufficient to induce DNA bending, and the addition of RAG2 did not change the bending profile. In addition, a prenicked 12RSS bound by RAG1/2 proteins displayed a conformation similar to the one observed with the intact 12RSS, implying that no greater DNA bending occurs after the nicking step in the signal complex. Taken together, the quantitative AFM results on the components of the recombinase emphasize a tightly held complex with a bend angle value near 60 degrees , which may be a prerequisite step for the site-specific nicking by the V(D)J recombinase.  相似文献   

14.
V(D)J recombination is initiated by the specific binding of the RAG1-RAG2 (RAG1/2) complex to the heptamer-nonamer recombination signal sequences (RSS). Several steps of the V(D)J recombination reaction can be reconstituted in vitro with only RAG1/2 plus the high-mobility-group protein HMG1 or HMG2. Here we show that the RAG1 homeodomain directly interacts with both HMG boxes of HMG1 and HMG2 (HMG1,2). This interaction facilitates the binding of RAG1/2 to the RSS, mainly by promoting high-affinity binding to the nonamer motif. Using circular-permutation assays, we found that the RAG1/2 complex bends the RSS DNA between the heptamer and nonamer motifs. HMG1,2 significantly enhance the binding and bending of the 23RSS but are not essential for the formation of a bent DNA intermediate on the 12RSS. A transient increase of HMG1,2 concentration in transfected cells increases the production of the final V(D)J recombinants in vivo.  相似文献   

15.
During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jβ2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jβ2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a “digital” requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an “analog” manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for “RSS information content.” The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein–DNA interactions in various biological systems.  相似文献   

16.
Mammalian immune receptor diversity is established via a unique restricted set of site-specific DNA rearrangements in lymphoid cells, known as V(D)J recombination. The lymphoid-specific RAG1-RAG2 protein complex (RAG1/2) initiates this process by binding to two types of recombination signal sequences (RSS), 12RSS and 23RSS, and cleaving at the boundaries of RSS and V, D, or J gene segments, which are to be assembled into immunoglobulins and T-cell receptors. Here we dissect the ordered assembly of the RAG1/2 heterotetramer with 12RSS and 23RSS DNAs. We find that RAG1/2 binds only a single 12RSS or 23RSS and reserves the second DNA-binding site specifically for the complementary RSS, to form a paired complex that reflects the known 12/23 rule of V(D)J recombination. The assembled RAG1/2 paired complex is active in the presence of Mg2+, the physiologically relevant metal ion, in nicking and double-strand cleavage of both RSS DNAs to produce a signal-end complex. We report here the purification and initial crystallization of the RAG1/2 signal-end complex for atomic-resolution structure elucidation. Strict pairing of the 12RSS and 23RSS at the binding step, together with information from the crystal structure of RAG1/2, leads to a molecular explanation of the 12/23 rule.  相似文献   

17.

Background  

V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element.  相似文献   

18.
Antibody and T cell receptor genes are assembled from gene segments by V(D)J recombination to produce an almost infinitely diverse repertoire of antigen specificities. Recombination is initiated by cleavage of conserved recombination signal sequences (RSS) by RAG1 and RAG2 during lymphocyte development. Recent evidence demonstrates that recombination can occur at noncanonical RSS sites within Ig genes or at other loci, outside the context of normal lymphocyte receptor gene rearrangement. We have characterized the ability of the RAG proteins to bind and cleave a cryptic RSS (cRSS) located within an Ig V(H) gene segment. The RAG proteins bound with sequence specificity to either the consensus RSS or the cRSS. The RAG proteins nick the cRSS on both the top and bottom strands, thereby bypassing the formation of the DNA hairpin intermediate observed in RAG cleavage of canonical RSS substrates. We propose that the RAG proteins may utilize an alternative mechanism for double-stranded DNA cleavage, depending on the substrate sequence. These results have implications for further diversification of the antigen receptor repertoire as well as the role of the RAG proteins in genomic instability.  相似文献   

19.
The RAG1 and RAG2 proteins initiate V(D)J recombination by introducing double-strand breaks at the border between a recombination signal sequence (RSS) and a coding segment. To understand the distinct functions of RAG1 and RAG2 in signal recognition, we have compared the DNA binding activities of RAG1 alone and RAG1 plus RAG2 by gel retardation and footprinting analyses. RAG1 exhibits only a three- to fivefold preference for binding DNA containing an RSS over random sequence DNA. Although direct binding of RAG2 by itself was not detected, the presence of both RAG1 and RAG2 results in the formation of a RAG1-RAG2-DNA complex which is more stable and more specific than the RAG1-DNA complex and is active in V(D)J cleavage. These results suggest that biologically effective discrimination between an RSS and nonspecific sequences requires both RAG1 and RAG2. Unlike the binding of RAG1 plus RAG2, RAG1 can bind to DNA in the absence of a divalent metal ion and does not require the presence of coding flank sequence. Footprinting of the RAG1-RAG2 complex with 1,10-phenanthroline-copper and dimethyl sulfate protection reveal that both the heptamer and the nonamer are involved. The nonamer is protected, with extensive protein contacts within the minor groove. Conversely, the heptamer is rendered more accessible to chemical attack, suggesting that binding of RAG1 plus RAG2 distorts the DNA near the coding/signal border.  相似文献   

20.
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号