首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

2.
The autocatalytic destruction of cytochrome P-450 by the following six substrates has been investigated in vivo and in vitro with microsomal and purified, reconstituted rat liver enzymes: 2-isopropyl-4-pentenamide (AIA), 1-ethinylcyclopentanol, 17α-propadienyl-19-nortestosterone, fluroxene, 5,6-dichloro-1,2,3-benzothiadiazole (DCBT), and 1-aminobenzotriazole (ABT). Administration of the first three substrates to rats pretreated with either phenobarbital (Pb) or 3-methylcholanthrene (3-MC), or their incubation with hepatic microsomes from such rats, produced a larger decrease in cytochrome P-450 levels in the membranes from Pb- than 3-MC-treated rats. Comparable losses, however, were observed in microsomes from rats pretreated with both Pb and 3-MC when the last three agents were used. Similar experiments were carried out using the major cytochrome P-450 isozymes purified from liver microsomes of Pb- or 3-MC-treated rats. The Pb isozyme was inactivated during catalytic turnover of all six substrates while only three substrates (DCBT, ABT, and fluroxene) were found to inactivate the 3-MC isozyme. Oxygen consumption studies with purified enzymes have shown that AIA is not a measurable substrate for the 3-MC isozyme, a fact which explains its failure to inactivate this isozyme. Similar studies with the Pb isozyme establish that one enzyme molecule is inactivated for approximately every 230–320 AIA molecules processed by the enzyme.  相似文献   

3.
The effects of coplanar+ 3,4,5,3′,4′,5′-hexachlorobiphenyl (HCB) and noncoplanar 2,4,5,2′,4′,5′-HCB, 2,3,5,2′,3′,5′-HCB, phenobarbitone (PB) and 3-methylcholanthrene (3-MC) on drug metabolizing enzymes have been studied 72 hr after dosing in male rat liver. 3-MC and 3,4,5,3′,4′,5′-HCB induced the activity of ethoxyresorufin deethylase dramatically. NADPH cytochrome P-450 reductase and benzphetamine N-demethylase were induced by PB and noncoplanar isomers and not by 3-MC or 3,4,5,3′,4′,5′-HCB. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the microsomes obtained from various groups showed that 3-MC and 3,4,5,3′,4′,5′-HCB induced the synthesis of a polypeptide of approximate 54,500 daltons which was absent in the microsomes obtained from control, PB or noncoplanar isomer treated animals. Noncoplanar isomers and PB induced the synthesis of a polypeptide of approximate 51,000 daltons. These results, along with the reduced, CO difference spectra, demonstrate that 3,4,5,3′,4′,5′-HCB induces the synthesis of cytochrome P-448 and resembled 3-MC in its mechanism of action, while noncoplanar isomers induced the synthesis of cytochrome P-450 and resembled PB in its mechanism of action. Further administration of various doses of 3,4,5,3′,4′,5′-HCB to genetically responsive mice (C57BL/6J), induced cytochrome P-450, caused one nm shift in the difference spectrum of reduced microsomes and induced the activity of ethoxyresorufin deethylase, whereas it did not induce the activity of ethoxyresorufin deethylase in non-responsive mice (DBA/2J) even at the highest dose studied. These studies indicate the fact that coplanar and noncoplanar isomers have differential interaction with Ah locus.  相似文献   

4.
The activities of cytochrome P-450-dependent monooxygenases has been investigated in the liver microsomes of newborn rats (3-16 days after birth) induced with PB or 3-MC. It has been shown that the induction by PB and 3-MC results in the increase of both the total amount of cytochrome P-450 as determined by the CO-reduced spectrum and the amount of induced forms P-450b/e and P-450c respectively. In the course of induction of the specific forms of cytochrome P-450 BP-hydroxylase and 7-ER-O-deethylase activities increased at 3-MC-induction, while BPh-N-demethylase and BP-hydroxylase increased at PB-induction. Analysis of inhibition of monooxygenase reactions with antibodies has showed that only P-450c was involved in metabolism of BP and 7-ER. Participation of P-450b/e in BPh N-demethylation was notably lower in the neonates in comparison to the adult rats. In the one-week-old rats induced with 3-MC a considerable rate of BP hydroxylation and 7-ER O-deethylation (2-4.5 nmol of product min-1 mg-1) has been observed despite a small amount of P-450 (0.02-0.1 nmol/mg of protein). This fact shows the higher catalytic activity of this cytochrome P-450 in the neonates compared to similar characteristics of P-450c in the 3-MC-induced microsomes. Metabolism of BP in the PB-microsomes of the neonatal rats was inhibited neither by anti-P-450b/e nor anti-P-450c in contrast to the adults, where this reaction was inhibited by antibodies against P-450b/e.  相似文献   

5.
J E Hulla  M R Juchau 《Biochemistry》1989,28(11):4871-4879
The purpose of this study was to quantify cytochrome P450IIIA1 in fetal and maternal livers of uninduced and pregnenolone-16 alpha-carbonitrile (PCN) induced rats during the course of prenatal development. The activities and levels of P450IIIA in hepatic microsomes from maternal rats and fetuses at 15-21 days of gestation were measured by triacetyloleandomycin (TAO) inhibited debenzylation of (benzyloxy)phenoxazone and by immunoassay with defined antiserum specific for P450IIIA. P450IIIA was not detectable (less than 10 pmol/mg for maternal microsomes and less than 2 pmol/mg for fetal microsomes) by immunoassay in uninduced maternal or fetal livers. In hepatic microsomes from PCN-induced dams, values ranged from 59.3 to 116 micrograms P450IIIA1/mg of protein during the same gestational period. Changes in debenzylase activity of 15.9-46.5 pmol of resorufin (mg of protein)-1 min-1 were consistent with these findings as were the changes in TAO-inhibitable debenzylase activity. In the transplancentally induced fetal liver, debenzylase activity increased steadily from 0.19 pmol of resorufin mg-1 min-1 at day 15 to 9.34 pmol of resorufin mg-1 min-1 at day 21 and was paralleled by the TAO-inhibitable activity that ranged from 0.09 pmol of resorufin mg-1 min-1 at day 15 to 3.33 pmol of resorufin mg-1 min-1 at day 21. The amount of immunoreactive P450IIIA1 also increased from 0.5 to 28.7 micrograms/mg of microsomal protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cancer chemopreventive potential of Cancare, a multi-herbal formulation on chemically induced tumours was studied by N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis in rats and 20-methylcholanthrene (20-MC) induced sarcoma development in mice. Oral administration of Cancare was found to inhibit the liver tumour development induced by N-nitrosodiethylamine. Animals administered with NDEA had visible liver tumours by the end of 30th weeks and the liver weight was raised to 6.1 +/- 1.4 g/ 100 g body wt. None of the animals treated with Cancare (150 mg/ kg) developed any visible liver tumours by this period and the liver weight was 3.0 +/- 0.6 g/ 100 g body wt. Gamma-Glutamyl transpeptidase, a marker of hepatocellularcarcinoma, which was raised to 83.7 +/- 8. 9 U/l in serum of NDEA treated group was reduced to 35.2 +/- 6.1 U/l by simultaneous administration of Cancare. Elevated levels of serum alkaline phosphatase, glutamate pyruvate transaminase, bilirubin, liver glutathione S-transferase, glutathione and gamma-Glutamyl transpeptidase in the NDEA administered group was significantly reduced by Cancare administration. Cancare administration inhibited the sarcoma development and increased the life span of mice administered with 20-MC dose dependently. All animals in the control group developed sarcomas by 150th day and dead by 174th day after 20-MC administration. Cancare administration (30 mg and 150 mg/kg) inhibited the sarcoma development (46.7 and 60%) as well as increased the life span (53.3 and 66.7%) as estimated on 240th day after 20-MC administration. The results are indicative of the chemopreventive potential of Cancare against chemically induced neoplasmas.  相似文献   

7.
We administered triacetyloleandomycin (TAO) to rats and found that this macrolide antibiotic is the most efficacious inducer of liver microsomal cytochrome P-450 (P-450) examined to date. Liver microsomes prepared from TAO-treated rats contained greater than 5.0 nmol of P-450/mg of protein and a single induced protein as judged by analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein comigrated with P-450p, the major form of P-450 induced in liver microsomes of rats treated with pregnenolone-16 alpha-carbonitrile (PCN) or dexamethasone (DEX). On immunoblots of such gels developed with antibodies to P-450p, the TAO-induced protein reacted strongly as a single band. There was strict parallelism between the amount of immunoreactive P-450p in liver microsomes prepared from untreated rats or from rats treated with phenobarbital, TAO, DEX, or PCN, the ability of these microsomes to catalyze conversion of TAO to a metabolite which forms a spectral complex, and the ethylmorphine and erythromycin demethylase activities. Antibodies to P-450p specifically blocked microsomal TAO metabolite complex formation and ethylmorphine and erythromycin demethylase activities. Moreover, anti-P-450p antibodies completely immunoprecipitated solubilized TAO metabolite complexes prepared by detergent treatment of liver microsomes obtained from TAO-treated rats. Finally, we found that the major form of P-450 isolated from liver microsomes of TAO-treated rats and purified to homogeneity was indistinguishable from purified P-450p as judged by molecular weights, spectral characteristics, enzymatic activities, ability to bind TAO, peptide maps, and amino-terminal amino acid sequences. We concluded that, in addition to glucocorticoids, macrolide antibiotics are specific inducers of P-450p.  相似文献   

8.
Essential fatty acid interconversion during gestation in the rat   总被引:2,自引:0,他引:2  
The synthesis of arachidonic acid has been investigated in fetal and pregnant rat liver microsomes in the course of the gestation. The delta 5-desaturase activity decreased 2-3 times in rat liver between the 19th and 22nd day of the pregnancy. During this period the delta 5-desaturate activity increased 3-fold in the fetal liver, exceeding the activity of the maternal liver. In contrast, the activity of the fetal delta 6-desaturase was in the same range as in pregnant rat liver and the liver of control animals and did not change between these two stages of the gestation. The elongation rate of linoleic acid in fetal liver was 2-3 times lower than in maternal liver but this increased during the pregnancy. The fatty acid activate rate was always higher than the activity of the desaturases. At the 19th day, the activity of the delta 5-desaturase was apparently the rate limiting step of arachidonic acid synthesis in fetal liver. We did not find any delta 5- and delta 6-desaturase activities or linoleic acid elongation in the placenta microsomes.  相似文献   

9.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The synthesis of pharmacologically active diazepam metabolites (oxazepam, 4-hydroxydiazepam, N-demethyldiazepam) in liver microsomes of intact and phenobarbital-, 3-methylcholanthrene- and dexamethasone-induced male and female Wistar rats as well as in a reconstituted system with isolated forms of cytochrome P-450 (P-450a, P-450b, P-450c, P-450d and P-450k according to the Ryan nomenclature) was studied. Marked sex-dependent differences in the rates of diazepam metabolism in liver microsomes of intact and induced animals were revealed. The changes in the spectrum of diazepam metabolites in liver microsomes of induced rats (as compared to control animals) were revealed. In a reconstituted system only phenobarbital-induced cytochromes P-450b and P-450k were found to be active participants of diazepam N-demethylation; none of the isoenzymes tested were shown to be involved in diazepam hydroxylation.  相似文献   

11.
We have examined the induction of drug metabolizing enzymes in rat liver microsomes by azo dye, 1-(p-phenylazophenylazo)-2-naphthol (Sudan III). Marked increases were observed in the levels of cytochrome P-448 as well as in p-nitroanisole O-demethylase (p-NAD), amaranth (AR) and neoprontosil reductases (NPR) and 7-ethoxycoumarin O-deethylase (ECD) activities. On the other hand, aminopyrene N-demethylase activity was not significantly increased. Further, induced ECD activity was inhibited 90% by a specific antibody against cytochrome P-448 while the inhibition observed with an antibody against cytochrome P-450 was less than 25%. Simultaneous administration of Sudan III and 3-methylcholanthene (3-MC) induced cytochrome P-448 up to a level brought about by either Sudan III or 3-MC treatment alone. In contrast, Sudan III did not induce cytochrome P-448 in the 3-MC insensitive DBA/2 mouse. Solubilized microsomes from Sudan III-treated rats showed an identical sodium dodecyl sulfate polyacrylamide gel electrophoretic (SDS-PAGE) pattern with those from 3-MC-treated animals. It is concluded that the cytochrome P-448 induced in liver by Sudan III is very similar to that induced by 3-MC. Sudan III also induced UDP-glucuronyltransferase activity towards 1-naphthol and estradiol. It did not induce NADPH-cytochrome c reductase, nor any of the enzymes which constitute the microsomal electron transport chain except for cytochrome P-448.  相似文献   

12.
Specific antibodies were prepared against cytochromes P450 PB-1, PB-2, PB-4, and PB-5 purified from hepatic microsomes of male rats treated with phenobarbital. With these antibodies, the levels of these four cytochrome P450s in hepatic, renal, and pulmonary microsomes of male rats that were untreated, treated with phenobarbital, or treated with 3-methylcholanthrene were examined. P450 PB-1 and PB-2 were present in moderate amounts in hepatic microsomes of untreated male rats and were induced 2- to 3-fold with phenobarbital. Also, the expression of these forms was suppressed by 3-methylcholanthrene. These forms were not detected in the renal or pulmonary microsomes of untreated rats or rats treated with phenobarbital or 3-methylcholanthrene. P450 PB-4 and PB-5 were found in the hepatic microsomes of untreated male rats at a low level but were induced with phenobarbital more than 50-fold. P450 PB-4 and PB-5 were not detected in renal microsomes; only P450 PB-4 or a closely related form was present in the pulmonary microsomes of untreated male rats, and its level was not changed by phenobarbital treatment. The constitutive presence of P450 PB-4 in pulmonary microsomes was confirmed by the investigation of testosterone metabolism. Purified P450 PB-4 had high testosterone 16 alpha- and 16 beta-hydroxylation activity in a reconstituted system. The testosterone 16 beta-hydroxylation activity of hepatic microsomes was induced with phenobarbital, and more than 90% of the testosterone 16 beta-hydroxylation activity of hepatic microsomes from rats treated with phenobarbital was inhibited by anti-P450 PB-4 antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A protein immunochemically related to P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, was detected in rat liver microsomes. The content of the immunoreactive protein in rat liver microsomes was increased by treatments with phenobarbital, pregnenolone 16 alpha-carbonitrile (PCN), erythromycin, erythromycin estolate, and oleandomycin but not with 3-methylcholanthrene, imidazole, ethanol, isosafrole, josamycin, midecamycin, or miocamycin. The activity of erythromycin N-demethylase correlated with the content of the immunoreactive protein in rat liver microsomes (r = 0.72). In addition, anti-P-450 HFLa IgG inhibited erythromycin N-demethylase in liver microsomes from erythromycin- or oleandomycin-pretreated rats. Furthermore, the content of the immunoreactive protein highly correlated with that of P-450 PB-1, which is distinct from Waxman's terminology, and is one of the forms of PCN-inducible cytochrome P-450s (r = 0.95). From these results and the results reported so far, it seems possible that P-450 HFLa is one of the forms of cytochrome P-450 inducible by glucocorticoids.  相似文献   

14.
The expression of hepatic calcium-binding protein regucalcin mRNA in fetal rats was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb with complete open reading frame). Hepatic regucalcin mRNA levels were progressively increased with fetal development; the mRNA was clearly expressed at 15 and 21 days of pregnancy but only slightly at the 8 days. Meanwhile, -actin mRNA levels in the fetal liver were remarkable at 8 and 15 days of pregnancy. The fetal liver regucalcin mRNA levels at 15 days of pregnancy were significantly decreased by overnight-fasting of maternal rats. The oral administration of calcium chloride (50 mg Ca/100 g body weight) to maternal rats at 15 days of pregnancy caused a remarkable elevation (about 2 fold) of regucalcin mRNA levels in the fetal liver; this increase was seen 60 and 180 min after the calcium administration. After birth, regucalcin mRNA was increasingly expressed in the livers of newborn and weanling rats, while hepatic -actin mRNA expression was not appreciably altered with increasing ages. These findings demonstrate that the expression of hepatic regucalcin mRNA is increased with fetal development, and that the gene expression may be stimulated by the ingestion of dietary calcium.  相似文献   

15.
Cytochrome P-450j has been purified to electrophoretic homogeneity from hepatic microsomes of adult male rats administered ethanol and compared to the corresponding enzyme from isoniazid-treated rats. The enzymes isolated from ethanol- and isoniazid-treated rats have identical chromatographic properties, minimum molecular weights, spectral properties, peptide maps, NH2-terminal sequences, immunochemical reactivities, and substrate selectivities. Both preparations of cytochrome P-450j have high catalytic activity in aniline hydroxylation, butanol oxidation, and N-nitrosodimethylamine demethylation with turnover numbers of 17-18, 37-46, and 15 nmol product/min/nmol of P-450, respectively. A single immunoprecipitin band exhibiting complete identity was observed when the two preparations were tested by double diffusion analysis with antibody to isoniazid-inducible cytochrome P-450j. Ethanol- and isoniazid-inducible rat liver cytochrome P-450j preparations have also been compared and contrasted with cytochrome P-450 isozyme 3a, the major ethanol-inducible isozyme from rabbit liver. The rat and rabbit liver enzymes have slightly different minimum molecular weights and somewhat different peptide maps but similar spectral, catalytic, and immunological properties, as well as significant homology in their NH2-terminal sequences. Antibody to either the rat or rabbit isozyme cross-reacts with the heterologous enzyme, showing a strong reaction of partial identity. Antibody against isozyme 3a specifically recognizes cytochrome P-450j in immunoblots of induced rat liver microsomes. Aniline hydroxylation catalyzed by the reconstituted system containing cytochrome P-450j is markedly inhibited (greater than 90%) by antibody to the rabbit protein. Furthermore, greater than 85% of butanol or aniline metabolism catalyzed by hepatic microsomes from ethanol- or isoniazid-treated rats is inhibited by antibody against isozyme 3a. Results of antibody inhibition studies suggest that cytochrome P-450j is induced four- to sixfold by ethanol or isoniazid treatment of rats. All of the evidence presented in this study indicates that the identical cytochrome P-450, P-450j, is induced in rat liver by either isoniazid or ethanol, and that this isozyme is closely related to rabbit cytochrome P-450 isozyme 3a.  相似文献   

16.
9-Hydroxyellipticine (9-OHE), a potent inhibitor of rat liver monooxygenase activities, binds to the various forms of partially purified lung cytochromes P-450 from untreated and 3-methylcholanthrene (3-MC)-treated rabbits. The spectral data (lambda max: 428 nm (ox.), 447 nm (red.), Ks: 10 microM and 5 muM for cytochrome I and cytochrome II from 3-MC-treated rabbits respectively) resemble those obtained with cytochrome P-450 purified from liver of Aroclor 1254-pretreated rats (lambda max: 428 nm (ox.), 445 nm (red.), Ks: 8 microM). 9-OHE has been shown to inhibit the benzo[a]pyrene hydroxylase activity of rat and rabbit lung microsomes. The inhibitory effect was higher towards the 3-MC-induced lung microsomes than with the control microsomes. However, the lung microsomes, as well as the liver microsomes of rabbits were less sensitive to inhibition by 9-OHE than the corresponding microsomes from rats. These results suggest that rabbit and rat cytochromes P-450 have subtle structural differences.  相似文献   

17.
The properties and localization of the active center of NADPH-dependent nitroxide radical reduction in rat liver microsomes were investigated with the following five spin-probes as substrates; tetramethylpiperidinol-N-oxyl (TEMPOL) and four spin-labeled stearic acid derivatives with a nitroxide radical at the 5th, 7th, 12th, or 16th position of the hydrocarbon chain (abbreviated as 5SLS, 7SLS, 12SLS, and 16SLS, respectively). The ESR signals of these spin-probes in microsomes decreased on the addition of NADPH, and the decay was inhibited by pretreatment with SKF-525A. Experiments with various microsomal preparations induced by phenobarbital (PB), polychlorinated biphenyls (PCB), or 3-methylcholanthrene (3-MC) revealed that the reduction rate was correlated to the concentration of cytochrome P-450 but not to that of NADPH reductase. Thus, the nitroxide radicals of the SLSs and TEMPOL seem to be reduced by the combined action of NADPH-cytochrome P-450 reductase and cytochrome P-450. The decay showed a lag time, but no distinct correlation was observed between the lag time and the spin-probe species. On the other hand, the initial velocity of the nitroxide reduction depended strongly on the spin-probe species. Among the five spin-probes, 7SLS was reduced most quickly, followed by 5SLS, 12SLS, TEMPOL, and 16SLS in that order. The reduction rate varied from 0.18/min for 7SLS to 0.08/min for 16SLS. There was a linear relation between the cytochrome P-450 content and the reduction rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

19.
Six murine monoclonal antibodies against human hepatic cytochrome P-450 have been raised, using human liver microsomes (microsomal fractions) or semi-purified human cytochrome P-450 as immunogen. All six antibodies recognized the same highly purified of human liver cytochrome P-450 of molecular mass 53 kDa and gave rise to a single band at 53 kDa on immunoblots of human liver microsomes from 11 individuals. The antibodies also recognized proteins at 52 kDa and 54 kDa on immunoblots of control and induced male-rat liver microsomes, showing four different banding patterns. Antibodies HL4 and HP16 recognized a 52 kDa protein that was only weakly expressed in untreated rats and which was strongly induced by pregnenolone 16 alpha-carbonitrile (PCN) but not by phenobarbitone (PB), 3-methylcholanthrene (3MC), isosafrole (ISF), Aroclor 1254 (ARO), clofibrate or imidazole. HP10 and HL5 recognized a constitutive 52 kDa protein that was weakly induced by PCN but not by the other agents and was suppressed by 3MC and ARO. HP3 recognized a 54 kDa protein that was undetectable in control rats but was strongly induced by PB, PCN, ISF and ARO. HL3 appeared to recognize a combination of the proteins recognized by the other antibodies plus a 54 kDa protein that was weakly expressed in control rats. The constitutive proteins recognized were male-specific.  相似文献   

20.
Two methylenedioxyphenyl compounds, isosafrole (5-propenyl-1,3-benzodioxole) and an analog, 5-t-butyl-1,3-benzodioxole (BD), differ markedly as inducers of cytochrome P-450 isozymes in rat liver microsomes. Isosafrole is a mixed-type inducer, inducing P-450b, P-450c, and P-450d. In contrast, BD is a phenobarbital-type inducer, increasing P-450b, but producing little or no increase in P-450c or P-450d. Similarly, isosafrole increases the amount of translatable mRNA for P-450b, c and d, while BD induces only the mRNA for P-450b. Dimethylation of the methylene bridge carbon of BD to give 2,2-dimethyl-5-t-butyl-1,3-benzodioxole (DBD) blocks the formation of NADPH-reduced Type III metabolite-P-450 complexes in vitro, and diminishes but does not abolish the ability of the compound to induce P-450b. Western blots of microsomes from isosafrole and BD-treated rat livers confirm that in contrast to isosafrole, BD does not induce P-450d or P-450c. However, the antibody to P-450d recognizes two new polypeptides (approximately 50K Mr) from sodium dodecyl sulfate-polyacrylamide gels of liver microsomes from BD-treated rats. These polypeptides are not observed in control, isosafrole, 3-methylcholanthrene (3-MC), or DBD-treated rats. They are intensified by coadministration of 3-MC with BD and may represent either modified isozyme-metabolite adducts or degradation products of P-450d. However, the polypeptides could not be generated in vitro by addition of BD to 3-MC-induced microsomes with NADPH under conditions which produced spectral metabolite complexes, or in a reconstituted system with P-450d. The two methylenedioxyphenyl compounds do not form stable metabolite complexes with the same P-450 isozymes. BD formed distinct spectral metabolite complexes in vitro with both P-450b and P-450c but not with P-450d in a reconstituted system. In contrast, isosafrole forms metabolite complexes with all three isozymes. Coadministration of 3-MC with BD blocked induction of P-450b by 80% and produced a similar repression of its translatable mRNA. This finding indicates that 3-MC type inducers not only induce certain cytochrome P-450 isozymes, but also repress synthesis of other isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号