首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The influence of light quality on positive phototopotaxis by the gliding, unicellular red alga Porphyridium purpureum was obtained using interference filters. Cells exposed to 3 × 10?7 mol · m2· s?1 of various wavelengths for 72 h showed maximum topotaxis at 420 and 440 nm. The lower threshold for positive, movement was approximately 5 × 10?8 mol · m?2· s?1. Random movement occurred at nonactinic wavelengths, and no movement occurred in the dark. Cell motility appeared to be unaffected by light polarity, suggesting that the photoreceptor(s) for topotaxis and photokinesis are randomly oriented.  相似文献   

2.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

3.
Upon reaction of luciferase-FMNH2 with oxygen a complex series of absorbance changes occur, leading to the formation of a stable (t12 about 35 min at 2°) dihydroflavin peroxyluciferase intermediate. Observed at 380, 445, or 600 nm, there is first a rapid absorbance increase which is oxygen-concentration dependent (k ? 106 M?1s?1. Following this there are two oxygen independent steps, first a slow absorbance decrease (k = 4.3 s?1) and then an even slower increase (k = 0.55 s?1). The dihydroflavin peroxide is not expected to have absorption at 600 nm and is thus postulated to be in equilibrium with some flavin species which does absorb in the red.  相似文献   

4.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

5.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

6.
The functioning of alternative routes of photosynthetic electron transport was analyzed from the kinetics of dark reduction of P700+ , an oxidized primary donor of PSI, in barley (Hordeum vulgare L.) leaves irradiated by white light of various intensities. Redox changes of P700 were monitored as absorbance changes at 830 nm using PAM 101 specialized device. Irradiation of dark-adapted leaves caused a gradual P700+ accumulation, and the steady-state level of oxidized P700 increased with intensity of actinic light. The kinetics of P700+ dark reduction after a pulse of strong actinic light, assayed from the absorbance changes at 830 nm, was fitted by a single exponential term with a halftime of 10–12 ms. Two slower components were observed in the kinetics of P700+ dark reduction after leaf irradiation by attenuated actinic light. The contribution of slow components to P700+ reduction increased with the decrease in actinic light intensity. Two slow components characterized by halftimes similar to those observed after leaf irradiation by weak white light were found in the kinetics of dark reduction of P700+ oxidized in leaves with far-red light specifically absorbed by PSI. The treatment of leaves with methyl viologen, an artificial PSI electron acceptor, significantly accelerated the accumulation of P700+ under light. At the same time, the presence of methyl viologen, which inhibits ferredoxin-dependent electron transport around PSI, did not affect three components of the kinetics of P700+ dark reduction obtained after irradiations with various actinic light intensities. It was concluded that some part of PSI reaction centers was not reduced by electron transfer from PSII under weak or moderate intensities of actinic light. In this population of PSI centers, P700+ was reduced via alternative electron transport routes. Insensitivity of the kinetics of P700+ dark reduction to methyl viologen evidences that the input of electrons to PSI from the reductants (NADPH or NADH) localized in the chloroplast stroma was effective under those light conditions.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 5–11.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

7.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

8.
Changes in light quantity and quality cause structural changes within the thylakoid membrane; long‐term responses have been described for so‐called ‘sun’ and ‘shade’ leaves. Many leaves, however, experience changes in irradiance on a time scale of minutes due to self‐shading and sun flecks. In this study, mature, attached spinach leaves were grown at 300 µmol photons m?2 s?1 then rapidly switched to a different light treatment. The treatment irradiances were 10, 800 or 1500 µmol m?2 s?1 for 10 min, or 10 or 20 min of self‐shading (about 10 µmol m?2 s?1). Image analysis of transmission electron micrographs revealed that a 10 min switch to a lower light intensity increased grana size and number per chloroplast profile by 10–20%. Returning the leaves to 300 µmol m?2 s?1 for 10 min reversed the phenomenon. Chlorophyll fluorescence measurements of detached, intact leaves at 77 K were suggestive of a transition from state 2 to state 1 upon shading. Diurnal ultrastructural measurements of granal size and number did not reveal a significant net change in ultrastructure over the time scale of hours. It is concluded that spinach chloroplasts can alter the degree of thylakoid appression in response to irradiance changes on a time scale of minutes. These ultrastructural responses are caused by biochemical and biophysical adjustments within the thylakoid membrane that serve to maximize photosynthesis and minimize photo‐inhibition under rapidly fluctuating light environments.  相似文献   

9.
Stomatal responses to light of Arabidopsis thaliana wild-type plants and mutant plants deficient in starch (phosphoglucomutase deficient) were compared in gas exchange experiments. Stomatal density, size and ultrastructure were identical for the two phenotypes, but no starch was observed in guard cells of the mutant plants whatever the time of day. The overall extent of changes in stomatal conductance during 14 h light–10 h dark cycles was similar for the two phenotypes. However, the slow endogenous stomatal opening occurring in darkness in the wild type was not observed in the mutant plants. Stomata in the mutant plants responded much more slowly to blue light (70 μmol m?2 s?1) though the response to red light (250 μmol m?2 s?1) was similar to that of wild-type plants. In paradermal sections, stomatal responses to red light (300 μmol m?2 s?1) were weak for wild-type plants as well as for mutant plants. Stomatal opening was greater under low blue light (75 μmol m?2 s?1) than under red light for the two genotypes. However, in mutant plants, a high chloride concentration (50 mol m?3) was necessary to achieve the same stomatal aperture as observed for the wild-type plants. These results suggest that starch metabolism, via the synthesis of a counter-ion to potassium (probably malate), is required for full stomatal response to blue light but is not involved in the stomatal response to red light.  相似文献   

10.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

11.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

12.
《Free radical research》2013,47(4-6):351-358
n-Propyl gallate reacts with the superoxide radical anion in aqueous solution (k = 5.1 × 105 mol?1 dm3s?1). The spectrum of the transient species so formed has been measured (absorbance maximum at 550nm, ? = 1360mol?1dm3cm?1). Electron or H atom transfer processes as well as proton abstraction have been excluded as possible mechanisms, and it is proposed that an addition reaction takes place.  相似文献   

13.
A brief pulse of blue light induces the common soil fungus Trichoderma harzianum to sporulate. Photoresponse mutants with higher light requirements than the wild type are available, including one class, dim Y, with modified absorption spectra. We found blue-light-induced absorbance changes in the blue region of the spectrum, in wild-type and dim Y mutant strains. The light-minus-dark difference spectra of the wild type and of several other strains indicate photoreduction of flavins and cytochromes, as reported for other fungi and plants. The difference spectra in strains with normal photoinduced sporulation have a prominent peak at 440 nm. After actinic irradiation, this 440 nanometer difference peak decays rapidly in the dark. In two dim Y photoresponse mutants, the difference spectra were modified; in one of these, LS44, the 440 nanometer peak was undetectable in difference spectra. Detailed study of the dark-decay kinetics in LS44 and the corresponding control indicated that the 440 nanometer difference peak escaped detection in LS44 because it decays faster than in the control. The action spectrum of the 440 nm difference peak is quite different from that of photoinduced sporulation. The light-induced absorbance changes are thus unlikely to be identical to the primary photochemical reaction triggering sporulation. Nevertheless, these results constitute genetic evidence that physiologically relevant pigments participate in these light-induced absorbance changes in Trichoderma.  相似文献   

14.
Electric impulses of high field intensity (2 × 105 to 3 × 106 Vm?1, 1 to 20 μs duration) cause transient changes in the optical absorbance of suspended purple membranes of Halobacterium halobium. The electric dichroism at 1 mm NaCL, pH ≈ 6 and at 293K is dependent on field strength, pulse duration and wavelength of the monitoring, plane-polarized light in the range 400 to 650 nm. The optically detected processes are, however, independent of bacteriorhodopsin concentration, of ionic strenght and of the intensity of the monitoring light. These data together with the analysis of time course ands steady state of the reduced dichroism, suggest electric field-sensitive, intramemembraneous structural changes which lead to restricted orientation changes of the chromophore. A thoretical analysis of restricted orientation is developed and applied to the electro-optic data. As a result, it is found that the electric dichroism of purple membrane is associated with a large polarizability anisotropy of 2.4 × 10?30 Fm2 (2.2 × 10?14 cm3); the electric permanent dipole moment which is involved amounts to 4.7 × 10?28 Cm(140 Debye). The kinetic data suggest a cyclic reaction scheme with at least five different conformations. The high polarizability is probably due to displaceable ionic groups within the cooperative lattice of bacteriorhodopsin molecules in purple membranes.  相似文献   

15.
We have established several optimal conditions for qualitative and quantitative allantoin determination by applying Ehrlich's reagent. The limit of detection for allantoin determination amounts to 5 × 10?6 mm. Allantoin is determined quantitatively by measuring the absorbance at 440 nm (from 300 to 1000 μg/ml). The color of the complex becomes stable by standing for 10 min at room temperature. We have used these conditions for allantoin determination in Agrostemma githago seed.  相似文献   

16.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   

17.
The chl a specific absorption coefficients [a* (λ), m2·mg chl a ? 1] were examined in chemostat culture of the Prymnesiophyceae Isochrysis galbana (Parke) under a 12:12‐h light:dark cycle at low light (75 μmol photons·m ? 2·s ? 1) and high light (500 μmol photons· m ? 2·s ? 1) conditions. Other associated measurements such as pigment composition, cell density, and diameter as the measure of cell size were also made at the two light regimes every 2 h for 2 days to confirm the periodicity. A distinct diel variability was observed for the a* (λ) with maxima near dawn and minima near dusk. The magnitude of diel variation in a* (440) was 15% at low light and 22% at high light. Pronounced diel patterns were observed for cell size with minima near dawn and maxima near dusk. The magnitude of diel variation in cell size was 9.3% at low light and 21% at high light. The absorption efficiency factors [Q a (440)] were determined by reconstruction using intracellular concentrations of pigments and cell size. The Q a (440) also showed a distinct diel variability, with minima near dawn and maxima near dusk. The diel variation in a* (λ) and Q a (λ) was primarily caused by changes in cell size due to growth, although there was some influence from diel variations in the intracellular pigment concentrations. The results presented here indicated that diel variation in a* (λ) was an important component of the optical characterization of phytoplankton.  相似文献   

18.
Polyamine oxidase was purified and crystallized with an overall yield of 35% from mycelial extract of Penicillium chrysogenum by a procedure involving ammonium sulfate fractionation, and DEAE-cellulose and Sephadex G-200 column chromatographies. The crystalline enzyme was homogeneous, as judged by disc gel electrophoresis and ultracentrifugation. The sedimentation coefficient (s20, w0) of the enzyme was determined to be 6.9S, and diffusion coefficient (D20, w) to be 4.2 × 10?7 cm2 sec?1. The enzyme showed a molecular weight of about 160,000 by gel filtration method and ultracentrifugal analysis, and it was composed of two identical subunits. The enzyme was a flavoprotein with absorption maxima at 275, 375 and 450 nm. The prosthetic group was identified to be FAD. The enzyme oxidized spermine, and slightly oxidized spermidine. Diamines and monoamines were not oxidized.  相似文献   

19.
Rapid, Blue-Light Induced Transpiration in Avena   总被引:2,自引:0,他引:2  
The transpiration responses of primary Avena leaves to blue-light pulses were investigated. Only light with wave length shorter than 524 nm can produce the rapid transpiration response. The action spectrum has a maximum around 450 nm. The rapid transpiration response induced by blue-light pulses successively disappeared in long-term experiments if the plant was kept in darkness between the pulses. However, if visible light was given to the plant between the pulses, the rapid response was restored. The magnitude of the rapid transpiration response was investigated under different conditions of background illumination and blue-light exposure. Saturation of the response was obtained with an irradiation level of 1.5–2 mW.cm?2 (5 min pulses) and with a pulse duration of 4 min (pulse irradiance 2 mW.cm?2). A pulse duration of 3 s was sufficient to produce a significant rapid response at an irradiation level of 2 mW.cm?2.  相似文献   

20.
The seasonal abundance of epilithic algae was correlated with major physico-chemical parameters in a first-order, heavily shaded stream in northern Arizona. Diatoms made up over 85%, by numerical abundance, of the epilithon community Light energy, water temperature, and stream discharge were most highly correlated with seasonal abundance of epilithic diatom taxa when analyzed with stepwise multiple regression. None of the chemical variables measured in the study (NO3-N, O-PO4, SiO2, including PH) was found to be significantly correlated with the seasonal community structure of epilithic diatoms. Total diatom cell densities showed a significant negative correlation to stream bed light energy. Likewise, total diatom cell densities along a transect in the stream bed showed a negative correlation to current velocity during those months when base flow was low and stable, and current velocity was ≤25 cm·sec-1. Most diatom taxa had highest cell densities at temperatures < 16°C and at daily mean stream bed light levels < 400 μE·m?2·s?1. Highest cell densities of green algae occurred at temperatures between 6–16°C and at daily mean stream bed light levels of > 400 μE·m?2·s?1. Blue-green algae (cyanobacteria) grew best at the highest recorded water temperatures and daily mean stream bed light energy (16–20°C and 900–1200 μE·m?2·s?1). Abrupt increases in NO3-N coincided with a brief pulse of Nostoc pruniforme colonies during June, and leaf drop from Alnus oblongifolia during October.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号