首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To determine the effectiveness of an alkaline cleaner used in food-processing plants and a lytic bacteriophage specific for Escherichia coli O157:H7 in killing wild type and rpoS-deficient cells of the pathogen in a biofilm. METHODS AND RESULTS: Wild type and rpoS-deficient cells were attached to stainless steel coupons (c. 7-8 log CFU per coupon) on which biofilms were developed during incubation at 22 degrees C for 96 h in M9 minimal salts media (MSM) with one transfer to fresh medium. Coupons were treated with 100 and 25% working concentrations of a commercial alkaline cleaner (pH 11.9, with 100 microg ml(-1) free chlorine) used in the food industry, chlorine solutions (50 and 100 microg ml(-1) free chlorine), or sterile deionized water (control) at 4 degrees C for 1 and 3 min. Treatment with 100% alkaline cleaners reduced populations by 5-6 log CFU per coupon, a significant (P < or = 0.05) reduction compared with treatment with water. Initial populations (2.6 log CFU per coupon) of attached cells of both strains were reduced by 1.2 log CFU per coupon when treated with bacteriophage KH1 (7.7 log PFU ml(-1)) for up to 4 days at 4 degrees C. Biofilms containing low populations (2.7-2.8 log CFU per coupon) of wild type and rpoS-deficient cells that had developed for 24 h at 22 degrees C were not decreased by more than 1 log CFU per coupon when treated with KH1 (7.5 log PFU ml(-1)) at 4 degrees C. CONCLUSIONS: Higher numbers of cells of E. coli O157:H7 in biofilms are killed by treatment with an alkaline cleaner than with hypochlorite alone, possibly through a synergistic mechanism of alkaline pH and hypochlorite. Populations of cells attached on coupons were reduced by treating with bacteriophage but cells enmeshed in biofilms were protected. SIGNIFICANCE AND IMPACT OF THE STUDY: The alkaline pH, in combination with hypochlorite, in a commercial cleaner is responsible for killing E. coli O157:H7 in biofilms. Treatment with bacteriophage KH1 reduces populations of cells attached to coupon surfaces but not cells in biofilms.  相似文献   

2.
AIMS: Biofilms in water distribution systems represent a far more significant reservoir of micro-organisms than the water phase. Biofilms are (i) resistant to disinfectants, (ii) nuclei for microbial regrowth, (iii) a refuge for pathogens, (iv) accompanied by taste and odour problems, and (v) corrode surfaces. The effects of the current strategies for disinfection of drinking water systems in large buildings (chlorination, copper and silver ionization, and hyper-heating) were compared with a new generation of bismuth thiol (BT) biocides. METHODS AND RESULTS: Multispecies biofilms were treated with 0.8 mg l(-1) of free chlorine, 400 and 40 microg l(-1) of copper and silver ions, respectively, at 55 and 70 degrees C, and bismuth-2,3-dimercaptopropanol (BisBAL). Furthermore, the effect of combined heat and BisBAL on planktonic cell viability was examined in monoculture using Escherichia coli suspensions. Inactivation rates for BisBAL were similar to copper-silver ions, where the effects were slower than for free chlorine or temperature. The BisBAL effect on E. coli monocultures was augmented greatly by increasing temperatures. CONCLUSIONS: Like copper-silver ions, BTs show more persistent residual effects than chlorine and hyper-heating in water systems. BT efficiency increased with temperature. Like copper-silver ions, BT action is relatively slow. SIGNIFICANCE AND IMPACT OF THE STUDY: BT presents a new approach to containing water biofilms. BT action is not as rapid, but is more thorough than chlorine, and less caustic. BTs may also be more efficacious in hot water systems. At sub-minimum inhibition concentration levels, BTs uniquely inhibit bacterial exopolysaccharide, thereby retarding biofilm formation. Thus, the combination of bactericidal and residual effects may prevent slime build-up in hot water systems.  相似文献   

3.
AIMS: To determine the ability of Listeria monocytogenes to survive exposure to commercial food-processing equipment cleaning solutions and subsequent treatment with sanitizers or heat. METHODS AND RESULTS: Cells of five strains of L. monocytogenes were suspended in 1% solutions of eight commercial cleaners (pH 7.1-12.5) or in water (control) and incubated at 4 degrees C for 30 min or 48 h before populations were determined by plating on tryptose phosphate agar. After exposure of cells to cleaning solutions for 30 min, populations of the most resistant strain of L. monocytogenes were reduced by < or = 1.63 log10 cfu ml(-1). In only three highly alkaline cleaning solutions (pH 11.6-12.4) were populations reduced significantly (P < or = 0.05) compared with reductions in water. After 48 h, populations were significantly higher in one cleaning solution (pH 10.4) than in water, while populations in six of the other seven cleaning solutions were reduced by > or = 4.72 log10 cfu ml(-1). Cells exposed to cleaning solutions for 30 min became sensitive to 4.0 or 6.0 mg l(-1) free chlorine and to 50 or 100 mg l(-1) benzalkonium chloride and cetylpyridinium chloride, common components of quaternary ammonium sanitizers. Cells exposed to four of the five test cleaners had D56 degrees C values less than or equal to those of the control cells. CONCLUSIONS: Listeria monocytogenes tolerates exposure to a high concentration of alkaline cleaning solutions but consequently becomes sensitized to sanitizers. SIGNIFICANCE AND IMPACT OF THE STUDY: The elimination of L. monocytogenes surviving exposure to alkaline cleaning solutions widely used for food-processing equipment is essential and the appropriate use of sanitizers for subsequent application to equipment is important in achieving this goal.  相似文献   

4.
AIMS: To determine the differential adherence capabilities at three different temperatures of Listeria monocytogenes Scott A, a clinical food pathogen, and L. monocytogenes FM876, a persistent strain from a milk-processing environment, to stainless steel. METHODS AND RESULTS: Differential adherence was investigated by submerging stainless steel coupons in both 48-h Listeria monocultures and mixed cultures additionally containing Staphylococcus xylosus DP5H and Pseudomonas fragi ATCC 4973. Immunofluorescent microscopy and image analysis techniques were utilized to identify and quantify the L. monocytogenes cells adhering to the steel at 4 degrees C, 18 degrees C and 30 degrees C. The monoculture biofilms consistently contained greater L. monocytogenes numbers than the multispecies biofilms, with the persistent strain FM876 showing significantly greater adherence than strain Scott A. Optimum adherence occurred at 18 degrees C in monoculture biofilms. CONCLUSION: L. monocytogenes strains exhibit differential, temperature-dependent, adherence to stainless steel. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate temperature dependent biofilm adherence and support previous findings that persistent strains exhibit increased adherence capability.  相似文献   

5.
AIMS: The aim of this study was to determine the role of curli in attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel. METHODS AND RESULTS: Three curli-deficient strains (43895-, 43894- and E0018-) and three curli over-producing strains (43895+, 43894+ and E0018+) of E. coli O157:H7 were studied. Stainless steel coupons (SSC) were immersed in cell suspensions of each strain for 24 h at 4 degrees C. The number of cells attached to SSC was determined. To determine the ability of attached cells to form biofilm, SSC were immersed in 10% of tryptic soya broth up to 6 days at 22 degrees C. Curli-deficient and curli-producing strains did not differ in their ability to attach to SSC, but only curli-producing strains formed biofilms. CONCLUSIONS: Curli production by E. coli O157:H7 does not affect attachment of cells on stainless steel but curli-producing strains are better able to form biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: Curli production by E. coli O157:H7 enhances its ability to form biofilm on stainless steel, thereby potentially resulting in increased difficulty in removing or killing cells by routine cleaning and sanitizing procedures used in food-processing plants.  相似文献   

6.
doi: 10.1111/j.1741‐2358.2011.00485.x
Candida albicans biofilm formation on soft denture liners and efficacy of cleaning protocols Objective: The aim of this study was to investigate Candida albicans biofilm formation on denture liners and to analyse the efficacy of cleaning protocols. Material and methods: Specimens were prepared from four silicone‐based soft denture liners. After artificial ageing and surface free energy determination, specimens were incubated with saliva (2 h) and Candida albicans ATCC 10231 for either short‐ (2.5 h) or long‐term (24 h) biofilm formation. Adherent cells were determined either after incubation of specimens with Candida albicans or after treatment with different denture cleaning protocols. Statistical analysis was performed using one‐way anova and the Games–Howell test (α = 0.05). Results: For both short‐ and long‐term biofilm formation, similar amounts of Candida albicans cells were found on the surface of the different liners (p = 0.295 and 0.178, respectively). For both short‐ and long‐term biofilm formation, the highest cleaning efficacy was observed for sodium hypochlorite (NaOCl; p < 0.01). The efficacy of the chemical denture cleaner in removing long‐term Candida albicans biofilms was significantly lower than the efficacy of removal by brushing (p < 0.001). Conclusion: Different silicone‐based soft denture liners yield similar Candida albicans biofilm formation on their surface. The highest efficacy for the removal of Candida albicans biofilms was identified for NaOCl. Chemical denture cleaners appear to have rather low efficacy to remove mature Candida albicans biofilms.  相似文献   

7.
The effectiveness of cleaning was investigated through food factory trials and laboratory experiments using a naturally occurring biofilm from a food factory environment and generated biofilms. The efficacy of factory cleaning and disinfection programmes was assessed by swabbing and total viable count (TVC) analysis of surfaces before cleaning, after cleaning and after disinfection. Cleaning produced a 0.91 log reduction in the attached population. Investigation of the effectiveness of a variety of cleaning methods in the removal of a naturally occurring food factory biofilm showed that the high pressure spray and the mechanical floor scrubber, which use a high degree of mechanical action, were most effective. Cleaning trials with biofilms of Pseudomonas aeruginosa or Staphylococcus aureus showed that spraying with water at pressures of 34.5, 51.7 and 68.9 bar did not significantly increase the removal, as assessed by direct epifluorescent microscopy (DEM) and swabbing and TVC analysis, beyond the three log reduction observed at 17.2 bar. The effect of spray time at 17.2 bar showed that increasing spray time from 1 to 10 s did not significantly increase removal of Ps. aeruginosa biofilm. Investigation of the optimum distance of the spray lance from the surface at 17.2 bar was found to be between 125 and 250 mm. The use of an alkaline, acidic or neutral detergent prior to spraying with water at 17.2 bar did not significantly increase the removal of Ps. aeruginosa or Staph. aureus. However, the acidic and alkaline products significantly (P = 0.05) affected the viability of Staph. aureus and Ps. aeruginosa, respectively, thereby minimizing the potential for the spread of contamination.  相似文献   

8.
Diet of broadstripe cleaning gobies on a Barbadian reef   总被引:3,自引:0,他引:3  
Gnathiid isopod larvae constituted the majority of countable food items taken by broadstripe gobies, Elacatinus prochilos , on Barbadian coral reefs, which confirms their important role in cleaning interactions. However, E. prochilos does not rely exclusively on cleaning for food since a large amount of benthic material, mainly sponge and coral polyps, was observed in the stomach contents of all cleaners. Less than one-third of cleaners had ingested ectoparasites. Elacatinus prochilos appears to consume few ectoparasites compared with other Elacatinus species elsewhere in the Caribbean and with Indo-Pacific cleaner species.  相似文献   

9.
AIMS: This project aimed to investigate the mechanism of attachment of the vegetative cells and spores of thermophilic bacilli to stainless steel with a view to devising strategies to limit biofilm development and survival. METHODS AND RESULTS: Spores and vegetative cells of bacterial isolates were exposed to protein denaturing agents (sodium dodecyl sulphate (SDS) and trypsin) and polysaccharide removing agents (sodium metaperiodate, trichloroacetic acid (TCA) and lysozyme). Treatment with sodium metaperiodate, TCA and lysozyme increased the number of vegetative cells attaching in many of the strains studied, while SDS and trypsin decreased attachment. Spores attached to stainless steel in greater numbers than vegetative cells, and the various treatments had less effect on this attachment than for vegetative cells. Viability of the cells or spores was not an important factor in attachment, as cells and spores rendered non-viable also attached to stainless steel in similar numbers. Coating the stainless steel with skim milk proteins decreased the attachment of both vegetative cells and spores. There was no correlation between the degree of attachment and the amount of extracellular polysaccharide (EPS) produced by each strain, surface hydrophobicity or zeta potential of vegetative cells or spores, though spores were found to be more hydrophobic than vegetative cells. CONCLUSIONS: The results suggest that biofilm formation by these thermophilic bacilli is probably a multifactorial process, and that cell-surface proteins play a very important role in the initial process of attachment during the formation of biofilms by these bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This information will provide direction for developing improved cleaning systems to control biofilms of thermophilic bacilli in dairy manufacturing plants.  相似文献   

10.
AIMS: A xylanase from the newly isolated thermophilic fungus, Thermomyces lanuginosus CAU44, was characterized and evaluated for its suitability in bread making. METHODS AND RESULTS: Xylanase was purified 3.5-fold to homogeneity with a recovery yield of 32.8%. It appeared as a single protein band on SDS-PAGE gel with a molecular mass of c. 25.6 kDa. The purified xylanase had an optimum pH of 6.2, and it was stable over pH 5.6-10.3. The optimal temperature of xylanase was 75 degrees C and it was stable up to 65 degrees C at pH 6.2. Study was further carried out to investigate the effect of the purified xylanase on the properties of wheat bread and its staling during storage. CONCLUSIONS: The purified xylanase from T. lanuginosus CAU44 was stable up to 65 degrees C and had a broad pH range. The presence of thermostable xylanase during bread making led to an improvement of the specific bread volume and better crumb texture. Besides, addition of xylanase provided an anti-staling effect. SIGNIFICANCE AND IMPACT OF THE STUDY: The xylanase from the newly isolated Thermomyces lanuginosus CAU44 shows great promise as a processing aid in the bread-making industry.  相似文献   

11.
In this study, a chemical-free cleaning method for biofilms removal is presented, which is based on intermittent low-intensity ultrasonication (US) triggered bursting of microbubbles (MB) in such a sequence that MB were continuously introduced into the reaction vessel for 15?min, while US was activated for 2?s after every 2?min of microbubbling. It was found that the fixed biomass, and the extracellular proteins and polysaccharides of 24-h old biofilms grown on a nylon membrane surface were reduced, respectively, by 75, 79 and 72% after treatment by the US?+?MB method. Fourier transform infrared (FTIR) analysis further revealed that the chemical composition of the biofilms was not altered by the US?+?MB treatment, suggesting that biofilms were removed through physical forces due to the generation of a shock wave and a high-speed water jet through US-triggered bursting of the MB. The proposed method can be considered a chemical-free technology for biofilm removal.  相似文献   

12.
Anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) was studied in upflow anaerobic sludge blanket (UASB) reactors operated under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. LAS C12 concentration in the influents was 10 mg.L(-1), and the hydraulic retention time in the reactors was 2 days. Adsorption of LAS C12 was assessed in an autoclaved control reactor and ceased after 115 days. The reactors were operated for a minimum of 267 days; 40-80% removal of LAS C12 was observed. A temperature reduction from 55 degrees C to 32 degrees C for 30 h resulted in process imbalance as indicated by increase of volatile fatty acids (VFA). The imbalance was much more intense in the LAS amended reactor compared with an unamended reactor. At the same time, the process imbalance resulted in discontinued LAS removal. This finding indicates that process stability is a key factor in anaerobic biological removal of LAS. After a recovery period, the removal of LAS resumed, providing evidence of biological anaerobic LAS degradation. The removal remained constant until termination of experiments in the reactor. Biodegradation of LAS in the mesophilic reactor was at the same level as in the thermophilic reactor under stable conditions.  相似文献   

13.
Inactivation of Campylobacter jejuni by high hydrostatic pressure   总被引:1,自引:0,他引:1  
AIMS: To investigate the response of Campylobacter jejuni ATCC 35919 and 35921 to high pressure processing (HPP) while suspended in microbiological media and various food systems. METHODS AND RESULTS: Campylobacter jejuni 35919 and 35921 were subjected to 10-min pressure treatments between 100 and 400 MPa at 25 degrees C suspended in Bolton broth, phosphate buffer (0.2 m, pH 7.3), ultra-high temperature (UHT) whole milk, UHT skim milk, soya milk and chicken pureé. The survivability of C. jejuni was further investigated by inoculated pack studies. HPP at 300-325 MPa for 10 min at 25 degrees C was sufficient to reduce viable numbers of both strains to below detectable levels when cells were pressurized in Bolton broth or phosphate buffer. All food products examined offered a protective effect in that an additional 50-75 MPa was required to achieve similar levels of inactivation when compared with broth and buffer. Inoculated pack studies showed that the survivability of C. jejuni following pressurization improved with decreasing post-treatment storage temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: These data demonstrated that HPP at levels of 相似文献   

14.
The aim of this study was to analyze the cleaning efficiency of polysaccharidases and proteolytic enzymes against biofilms of bacterial species found in food industry processing lines and to study enzyme effects on the composition of extracellular polymeric substances (EPS) and biofilm removal in a Clean-in-Place (CIP) procedure. The screening of 7 proteases and polysaccharidases for removal of biofilms of 16 bacterial species was first evaluated using a microtiter plate assay. The alkaline pH buffer removed more biofilm biomass as well as affecting a larger range of bacterial species. The two serine proteases and α-amylase were the most efficient enzymes. Proteolytic enzymes promoted biofilm removal of a larger range of bacterial species than polysaccharidases. Using three isolates derived from two bacterial species widely found in food processing lines (Pseudomonas fluorescens and the Bacillus cereus group), biofilms were developed on stainless steel slides and enzymatic solutions were used to remove the biofilms using CIP procedure. Serine proteases were more efficient in removing cells of Bacillus biofilms than polysaccharidases. However, polysaccharidases were more efficient in removing P. fluorescens biofilms than serine proteases. Solubilization of enzymes with a buffer containing surfactants, and dispersing and chelating agents enhanced the efficiency of polysaccharidases and proteases respectively in removing biofilms of Bacillus and P. fluorescens. A combination of enzymes targeting several components of EPS, surfactants, dispersing and chelating agents would be an efficient alternative to chemical cleaning agents.  相似文献   

15.
Abstract

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48?h biofilm was reduced by 2.10 log cfu cm?2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ~2.5 log cfu cm?2 of viable cells remaining after 105?min cleaning by water at 65?°C, compared to 4.5 log cfu cm?2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste  相似文献   

16.
When the interests of mutualists are not perfectly aligned, control mechanisms that modulate interactions can maintain mutually beneficial outcomes and stabilize mutualisms over evolutionary time. However, the costs and benefits of symbiosis often change with ontogeny and whether control mechanisms are adjusted to reflect ontogenetic changes is largely unknown. We examined the recently described cleaning symbiosis between crayfish Cambarus chaugaensis and ectosymbiotic annelids (Xironodrilus appalachius) for evidence of ontogenetic changes in symbiont control. Xironodrilus appalachius provide a beneficial cleaning service to C. chaugaensis by removing epibiotic accumulations from the gills, but crayfish also incur costs via density‐dependent facultative parasitism of gill tissue. A series of laboratory experiments using crayfish from three size (age) – classes demonstrated that crayfish use grooming to limit cleaner density and grooming effects on cleaners varied with crayfish age. Small crayfish quickly removed essentially all of their cleaners. Intermediate crayfish removed most of their cleaners, but some cleaners persisted at a location apparently inaccessible to grooming and far from the gill chamber. Large crayfish removed a smaller proportion of cleaners and cleaners were allowed access to the gill chamber, thus initiating the cleaning symbiosis. Cleaner removal was not dependent on cleaner density, suggesting that crayfish do not regulate cleaners to a specific density. Experimental results were corroborated by patterns observed during a field survey. We argue decreased cleaner removal and relaxed control of cleaner attachment sites corresponds to ontogenetic changes in the costs and benefits of symbiosis. This study integrates two major theoretical perspectives from ecological literature; control mechanisms and ontogenetic shifts, and illustrates how changes in control mechanisms with ontogeny may favor life‐long positive outcomes of symbiosis. Ontogenetic shifts in the costs and benefits of symbiosis may be common; therefore future theoretical and empirical studies of symbioses should incorporate both perspectives.  相似文献   

17.
Geographical variation in the outcome of interspecific interactions has a range of proximate ecological causes. For instance, cleaning interactions between coral reef fishes can result in benefits for both the cleaner and its clients. However, because both parties can cheat and because the rewards of cheating may depend on the local abundance of ectoparasites on clients, the interaction might range from exploitative to mutualistic. In a comparative analysis of behavioural measures of the association between the cleaner fish Labroides dimidiatus and all its client species, we compared cleaning interactions between two sites on the Great Barrier Reef that differ with respect to mean ectoparasite abundance. At Heron Island, where client fish consistently harbour fewer ectoparasites, client species that tended to pose for cleaners were more likely to receive feeding bites by cleaners than client species that did not pose for cleaners. This was not the case at Lizard Island, where ectoparasites are significantly more abundant. Client fish generally spent more time posing for cleaners at Lizard Island than their conspecifics at Heron Island. However, fish at Heron Island were inspected longer on average by cleaners than conspecifics at Lizard Island, and they incurred more bites and swipes at their sides per unit time from cleaners. These and other differences between the two sites suggest that the local availability of ectoparasites as a food source for cleaners may determine whether clients will seek cleaning, and whether cleaners will feed on parasites or attempt to feed on client mucus. The results suggest that cleaning symbiosis is a mosaic of different outcomes driven by geographical differences in the benefits for both participants.  相似文献   

18.
A research team at the University of Alaska Fairbanks Water and Environment Research Center conducted a series of column experiments to investigate the effect of flush water temperature and type (salt vs. fresh) on shoreline cleaning agent (SCA) efficiency. Results confirmed that the use of SCAs can enhance oil removal from porous media but showed that at the colder temperatures common in Alaska the efficiency of shoreline cleaners is significantly reduced. Using salt water also tends to decrease the efficiency of flushing. The data also show that the majority of the removal attributable to the shoreline cleaning agent occurs within the first one to three pore volume flushes. After that time, the effectiveness of the flushing procedure drops off to that of pure water for all three SCAs tested.  相似文献   

19.
To clarify the characteristics of thermophilic bacteria in cattle manure compost, enzymatic activity and species diversity of cultivated bacteria were investigated at 54, 60, 63, 66 and 70 degrees C, which were dependent on composting temperature. The highest level of thermophilic bacterial activity was observed at 54 degrees C. Following an increase in temperature to 63 degrees C, a reduction in bacterial diversity was observed. At 66 degrees C, bacterial diversity increased again, and diverse bacteria including Thermus spp. and thermophilic Bacillus spp. appeared to adapt to the higher temperature. At 70 degrees C, bacterial activity measured as superoxide dismutase and catalase activity was significantly higher than at 66 degrees C. However, the decomposition rate of protein in the compost was lower than the rate at 66 degrees C due to the higher compost temperature.  相似文献   

20.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号