首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leader peptidase is an enzyme of the Escherichia coli cytoplasmic membrane which removes amino-terminal leader sequences from many secreted and membrane proteins. Three potential membrane-spanning segments exist in the first 98 amino acids of leader peptidase. We have characterized the topology of leader peptidase based on its sensitivity to protease digestion. Proteinase K and trypsin treatment of right-side-out inner membrane vesicles and spheroplasts yields protected fragments of approximately 80 and 105 amino acid residues, respectively. We have shown that both fragments are derived from the amino terminus of the protein and that the smaller protected peptide can be derived from the larger. Removal of the third potential membrane-spanning segment (residues 82-98) does not affect the size of the proteinase K-protected fragment but does reduce the size of the trypsin-protected peptide. Because the proteinase K-protected fragment is about 9000 daltons, is derived from the amino terminus of leader peptidase, and its size is not affected when amino acids 82-98 are removed from the protein, it must extend from the amino terminus to approximately residue 80. Likewise, the trypsin-protected fragment must extend from the amino terminus to about residue 105. These data suggest a model for the orientation of leader peptidase in which the second hydrophobic stretch (residues 62-76) spans the cytoplasmic membrane and the third hydrophobic stretch resides in the periplasmic space.  相似文献   

2.
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly.  相似文献   

3.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

4.
5.
Leader peptidase is an integral protein of the Escherichia coli cytoplasmic membrane whose topology is known. We have taken advantage of this knowledge and available mutants of this enzyme to develop a genetic test for a cell-free protein translocation reaction. We report that leader peptidase inserted into inverted plasma membrane vesicles in its correct transmembrane orientation. We have examined the in vitro membrane assembly characteristics of a variety of leader peptidase mutants and found that domains required for insertion in vivo are also necessary for insertion in vitro. These data demonstrate the physiological validity of the in vitro insertion reaction and strengthen the use of this in vitro protein translocation reaction for the dissection of this complex sorting pathway.  相似文献   

6.
A carboxyl-terminal hydrophobic domain is an essential component of the processed signal for attachment of the glycosyl-phosphatidylinositol (GPI) membrane anchor to proteins and it is linked to the site (omega) of GPI modification by a spacer domain. This study was designed to test the hypothesis that the hydrophobic domain interacts with the lipid bilayer of the endoplasmic reticulum (ER) membrane to optimally position the omega site for GPI modification. The hydrophobic domain of the GPI signal in the human folate receptor (FR) type alpha was substituted with the carboxyl-terminal segment of the low-density lipoprotein receptor (LDLR), including its membrane spanning region, without altering either the spacer or the omega site. The FR-alpha/LDLR chimera was not GPI modified but was attached to the plasma membrane by a polypeptide anchor. When the carboxyl-terminal half of the hydrophobic transmembrane polypeptide in the FR-alpha/LDLR chimera was altered by introduction of negatively charged (Asp) residues, or when the cytosolic domain in the chimera was deleted, the mutated proteins became GPI-anchored. On the other hand, attachment of a carboxyl-terminal segment of LDLR including the entire cytosolic domain to FR-alpha converted it into a transmembrane protein. The results indicate that in the FR-alpha/LDLR chimera the inability of the cellular machinery for GPI modification to recognize the hydrophobic domain is not due to the intrinsic nature of the peptide, but is rather due to the retention of the peptide within the lipid bilayer. It follows that the hydrophobic domain in the signal for GPI modification must traverse the ER membrane prior to recognition of the omega site by the GPI-protein transamidase. The results thus establish a critical topographical requirement for recognition of the GPI signal in the ER.  相似文献   

7.
The 325-residue OmpA protein, which is synthesized as a precursor with a 21-residue signal sequence, is a polypeptide of the outer membrane of Escherichia coli K-12. The signal peptide is able to direct translocation across the plasma membrane of virtually any fragment of this protein. It had, therefore, been concluded that information required for this translocation does not exist within the mature part of the protein. This view has been criticized and it was suggested that our data showed that both the signal sequence and residues within the first 44 amino acid residues of the mature protein contributed to an optimal translocation mechanism. It is shown that, at least as far as is detectable, this is not so. The apparent rates of processing of various pro-OmpA constructs were measured. It was found that these rates did not depend on the presence of amino acid residues 4 through 45 but on the size of the polypeptides; the processing rate decreased with decreasing size. A possible explanation for this phenomenon is offered. While the results do not exclude the possibility that a defined area of the mature protein is involved in optimizing translocation, there is so far no evidence for it.  相似文献   

8.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

9.
Translocation of colicin across the membrane of sensitive cells has been studied extensively. However, processing of the toxicity domain of colicin during translocation has been the subject of much controversy. To investigate the final translocation product of colicin across the membrane of Escherichia coli, an endogenously expressed His-tagged Im7 protein was constructed to detect any translocation product containing the DNase domain traversed the inner membrane into cytoplasm of the E. coli cells. As a result, a final processed DNase domain of ColE7 was identified in the intracellular space of the cells treated with Col-Im complex. In the presence of periplasmic extracts, in vitro processing of DNase domain of ColE7 was also observed. These results suggest that the processing of ColE7 has occurred for translocation of the DNase-type colicin across the membrane and the process is probably taking place in the periplasmic space of the membrane.  相似文献   

10.
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.  相似文献   

11.
S MacIntyre  U Henning 《Biochimie》1990,72(2-3):157-167
Presently available data are reviewed which concern the role of the mature parts of secretory precursor proteins in translocation across the plasma membrane of Escherichia coli. The following conclusions can be drawn; i) signals, acting in a positive fashion and required for translocation do not appear to exist in the mature polypeptides; ii) a number of features have been identified which either affect the efficiency of translocation or cause export incompatibility. These are: alpha) protein folding prior to translocation; beta) restrictions regarding the structure of N-terminus; gamma) presence of lipophilic anchors; delta) too low a size of the precursor. Efficiency of translocation is also enhanced by binding of chaperonins (SecB, trigger factor, GroEL) to precursors. Binding sites for chaperonins appear to exist within the mature parts of the precursors but the nature of these sites has remained rather mysterious. Mutant periplasmic proteins with a block in release from the plasma membrane have been described, the mechanism of this block is not known. The mature parts of secretory proteins can also be involved in the regulation of their synthesis. It appears that exported proteins are already recognized as such before they are channelled into the export pathway and that their synthesis can be feed-back inhibited at the translational level.  相似文献   

12.
MsbA is an essential ABC transporter in Escherichia coli required for exporting newly synthesized lipids from the inner to the outer membrane. It remains uncertain whether or not MsbA catalyzes trans-bilayer lipid movement (i.e. flip-flop) within the inner membrane. We now show that newly synthesized lipid A accumulates on the cytoplasmic side of the inner membrane after shifting an E. coli msbA missense mutant to the non-permissive temperature. This conclusion is based on the selective inhibition of periplasmic, but not cytoplasmic, covalent modifications of lipid A that occur in polymyxin-resistant strains of E. coli. The accessibility of newly synthesized phosphatidylethanolamine to membrane impermeable reagents, like 2,4,6-trinitrobenzene sulfonic acid, is also reduced severalfold. Our data showed that MsbA facilitates the rapid translocation of some lipids from the cytoplasmic to the periplasmic side of the inner membrane in living cells.  相似文献   

13.
14.
Proteins that are able to translocate across biological membranes assume a loosely folded structure. In this review it is suggested that the loosely folded structure, referred to here as the 'pre-folded conformation', is a particular structure that interacts favourably with components of the export apparatus. Two soluble factors, SecB and GroEL, have been implicated in maintenance of the pre-folded conformation and have been termed 'molecular chaperones'. Results suggest that SecB may be a chaperone that is specialized for binding to exported protein precursors, while GroEL may be a general folding modulator that binds to many intracellular proteins.  相似文献   

15.
Both ATP and an electrochemical potential play roles in translocating proteins across the inner membrane of Escherichia coli. Recent discoveries have dissected the overall transmembrane movement into separate subreactions with different energy requirements, identified a translocation ATPase, and reconstituted both energy-requiring steps of the reaction from purified components. A more refined understanding of the energetics of this fundamental process is beginning to provide answers about the basic issues of how proteins move across the hydrophobic membrane barrier.  相似文献   

16.
Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide.  相似文献   

17.
Leader peptidase of Escherichia coli cleaves the leader sequence from the amino terminus of membrane and secreted proteins after these proteins insert across the membrane. Despite considerable research, the mechanism of catalysis of leader peptidase remains unknown. This peptidase cannot be classified using protease inhibitors to the serine, cysteine, aspartic acid, or metallo- classes of proteases (Zwizinski, C., Date, T., and Wickner, W. (1981) J. Biol. Chem. 256, 3593-3597). Using site-directed mutagenesis, we have attempted to place leader peptidase in one of these groups. We found that leader peptidase, lacking all of the cysteine residues, can cleave the leader peptide from procoat, the precursor to bacteriophage M13 coat protein. Replacement of each histidine residue with an alanyl residue was without effect on catalysis. Among all the serine and aspartic acid residues, serine 90 and serine 185 as well as aspartic acid 99, 153, 273, and 276 are necessary to cleave procoat in a detergent extract. However, only serine 90 and aspartic acid 153 were required for processing using a highly sensitive in vivo assay. In addition to the residues directly affecting catalysis, aspartic acid 99 plays a role in maintaining the structure of leader peptidase. Replacement of this residue with alanine results in a very unstable leader peptidase protein. This study thus defines two critical residues, serine 90 and aspartic acid 153, that may be directly involved in catalysis and provides evidence that leader peptidase belongs to a novel class of serine proteases.  相似文献   

18.
Leader peptidase (Lep) is a central component of the secretory machinery of Escherichia coli, where it serves to remove signal peptides from secretory proteins. It spans the inner membrane twice with a large C-terminal domain protruding into the periplasmic space. To investigate the importance of the different structural domains for the catalytic activity, we have studied the effects of a large panel of Lep mutants on the processing of signal peptides, both in vivo and in vitro. Our data suggest that the first transmembrane and cytoplasmic regions are not directly involved in catalysis, but that the second transmembrane region and the region immediately following it may be in contact with the signal peptide and/or located spatially close to the active site of Lep.  相似文献   

19.
Leader peptidase, an integral transmembrane protein of Escherichia coli, requires two apolar topogenic elements for its membrane assembly: a 'hydrophobic helper' and an internal signal. The highly basic cytoplasmic region between these domains is a translocation poison sequence, which we have shown blocks the function of a preceding signal sequence. We have used oligonucleotide-directed mutagenesis to remove positively charged residues within this polar domain to determine if it is the basic character in this region that has the negative effect on translocation. Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase. In addition, when the translocation poison domain (residues 30-52) is replaced with six lysine residues, the preceding apolar domain cannot function as an export signal, whereas it can with six glutamic acids. Thus, positively charged residues within membrane proteins may have a major role in determining the function of hydrophobic domains in membrane assembly.  相似文献   

20.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号