首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soybean ( Glycine max [L.] Merrill) plants, normal green (Clark L1) and mutant yellow (Clark y9y9), were grown in (1) full-spectrum solar irradiation; (2) either red plus far-red or blue plus far-red; (3) either red or blue light with no far-red light. Young leaves harvested from first (1TF) trifoliolate or fifth (5TF) trifoliolate stages of development showed that the mutant plants express pigment and protein deficiencies as a direct function of irradiance. Response of the mutant to light quality indicates that blue light slightly enhances expression of the mutation at higher irradiances. Direct response of light-harvesting proteins of photosystem 2 (LHCP2) and light-harvesting protein of photosystem 1 (LHCP1) to light quality increases the ratio of LHCP1/LHCP2 in blue light compared to that in red or red/far-red light. Rubisco proteins and Rubisco activity (leaf area basis) are directly related to irradiance level but are enhanced in blue light over equal irradiance red. This enhancement is not shown in the presence of far-red light.  相似文献   

2.
Arabidopsis thaliana (L.) Heynh. race Columbia plants were grown in red. blue, red + far-red, blue + far-red and various light mixtures of red + blue + far-red light under 14 h light/10 h dark photoperiods. Each single light source and light mixture maintained a constant irradiance (50 μmol m−2 s−1) and the mixtures of red + blue + far-red maintained a constant ratio of red/far-red light, but varied in the ratio of blue to red + far-red light. Depending on the method used for calculation, values of the fraction of phytochrome in the far-red absorbing form (Pfr/Ptot) for these light mixtures were either constant or decreased slightly with increasing percentage of blue light in the mixtures. Arabidopsis flowered early (20 days) in blue, blue + far-red and red + far-red light and late (55 days) in red light. In mixtures of red + blue + far-red light, each of which established a nearly constant Pfr/Ptot flowering was in direct relation to time and irradiance level of blue light. Leaf area and petiole length were also correlated with blue light irradiance levels.  相似文献   

3.
Baumgartner, N. and Fondeville, J. C. 1989. Photocontrol of the hypocotyl hook opening of Sinapis alba seedlings. Involvement of phytochrome and a high irradiance response.
A statistical evaluation of the hypocotyl hook opening (hook opening index) was used for measurement of the hook angle in lots of etiolated Sinapis alba L. cv. Albatros seedlings. Studies of the kinetics for hook opening were carried out in continuous fluorescent white, blue and red light (6, 15 and 40 μmol m-2s-1) with 2-day-old dark-grown seedlings. At the beginning of the irradiation period the photoresponse in red light was the opposite to that in blue (low photon fluences). Blue rapidly induced the hook opening (in less than 20 min), while red produced hook tightening (photon fluences up to 70 mmol m-2), which precedes the normal progressive hook opening. For low fluences, the data were consistent with the involvement of phytochrome and a specific blue light photoreceptor. A phytochrome effect was observed in the hook opening, dependent upon a high irradiance response (HIR). This HIR (like that for the inhibition of the hypocotyl elongation) was characterized by a wavelength response curve with maxima in the blue and far-red regions of the spectrum.  相似文献   

4.
Growth and development of hydroponically grown pea seedlings ( Pisum sativum L. cv. Alaska) were measured using stem and root length as well as number of leaves and lateral roots. The growth was dependent on the presence of cotyledons and was modulated by the irradiance. All plants were grown in a full nutrient solution. If grown at low irradiance (73 μmol m-2s-1) they depended more and for a longer time on the cotyledons than plants grown at high irradiance (220 μmol m-2s-1). Low irradiance caused stem elongation but decreased root length and number of lateral roots as compared to plants grown at high irradiance. The dark respiration of the leaves was measured as oxygen uptake. In plants grown at the low irradiance, excision of the cotyledons caused the rate of oxygen uptake to increase by a factor of three, and the increase was sensitive to cyanide. Decotyledonized plants showed a high respiration rate and a diminished leaf growth for their entire life cycle. CO2 fixation also increased in decotyledonized pea seedlings grown at either irradiance. The mobilization of food reserves from the seeds was positively correlated to seed dry weight, but only if the plants were grown at 73 μmol m-2s-1. Increasing dry weight of the seed enhanced top growth, whereas root growth was depressed, so that top and root responds differently with regard to that part of growth which depends on mobilization of reserves from the seed.  相似文献   

5.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   

6.
Maize ( Zea mays L. hybrid ZP-704) and black pine ( Pinus nigra Arn.) were grown for five days at low fluence rate (0.4–4.0, μmol m–2 s−1) in blue or red light. Compared to red light of the same fluence rate, blue light effects in maize were repressive for the accumulation of Chita, b , carotenoids and light-harvesting complex-2 (LHC-2) proteins. The maximal reduction of proteins bound to the light-harvesting complex of photosystem 2 and pigments was attained at different fluence rate levels. In black pine, blue light compared to the red of the same fluence rate level either activated or reduced accumulation of pigments and LHC proteins, the effect being dependent on its fluence rate level. At fluence less than 3.0 μmol m−2 s−1 blue light was more efficient for the synthesis of Chi a, b and carotenoids, hut for LHC-2 complexes, fluence rates between 0.4 and 1.5 [μmol m−2 s−1 were more effective. In pine the effects of the two lights on the accumulation of pigments and LHC proteins were demonstrated separately and were dependent on fluence rate level. This suggests irradianoe-controlled activation/deactivation of the photoreceptor at the level of the cell.  相似文献   

7.
Corn ( Zea mays L. cv. OP Golden Bantum) was grown under low irradiance blue, red or blue plus red light. Red was more effective than blue light for synthesis of Chl a, b and light-harvesting proteins (LHC-2) associated with photosystem 2(PS2). Blue light was slightly more effective for synthesis of light-harvesting proteins (LHC-1) associated with photosystem 1 (PS1), but below a fluence rate of 1 μmol m−2 s−1 the response to blue vs that to red depended on irradiance level. Blue light containing a small amount of red light was as effective as red light for Chl a and b synthesis, but no more effective than blue light for LHC-2 synthesis. Adding small amounts of blue light to red repressed the effect of red light on LHC-2 synthesis and produced irradiance response curves similar to those produced by blue alone for LHC-2 synthesis. This repression by blue light depended on the ratio of red to blue and the level of the blue light.  相似文献   

8.
The action of light in the initiation of floral buds in vitro has been studied using monochromatic light qualities on root explants of a long day plant, Cichorium intybus L. cv. Witloof. Red light (660 nm, 0.30 W m-2) promotes flowering, while far-red (730 nm, 0.31 W m-2) and irradiation with combined red + far-red (0.20 + 0.41 W m-2) have no effect. In short day conditions floral response can be obtained in two ways: 1) by interrupting the dark period with 5 brief irradiations of red light (0.45 W m-2, 12 min) at regular intervals, although these are counteracted by far-red irradiations of equal intensity and duration; 2) by interrupting the long night with 5 h red light applied during the second third of the night, while at the beginning or at the end it is ineffective. Red light efficiency appears to depend on the photosynthetic activity of the tissues, so that flowering increases with increasing intensity of white light and is suppressed if no white light is supplied. The reproductive development is determined by the coordination of proper irradiation conditions with sufficient sensitivity of the perceiving meristematic cells. The period of highest sensitivity to environmental light conditions in the life cycle of a Cichorium root explant occurs between the 8th and the 16th day after the start of the culture. The data strongly suggest that phytochrome is involved in flower induction of Cichorium in vitro.  相似文献   

9.
Dark grown leaves of wheat were irradiated with red light of different intensities, at a temperature close to 0°C. The rate of photoreduction of the protochlorophyllide 650-form into chlorophyllide 684-form was measured. On continued irradiation the chlorophyllide 684-form was photodecomposed. By comparing the rates of the two processes the quantum yield for photooxidation of the chlorophyllide 684-form was calculated. The quantum yield was 2°10-5 at an intensity of 2200 W m-2, and increased with decreasing light intensity to 3.2°10-5 at an intensity of 170 W m-2.  相似文献   

10.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

11.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

12.
Abstract: The effects of light (PFD) and nitrogen (N) supply on root respiration of new C (currently assimilated carbon, R new) and old C ( R old) were analysed in non-nodulated Medicago sativa . Plants were pre-treated with high/low PFD and high/low N supply with a regular 16/8 h light/dark cycle. Five to eight weeks after planting current photosynthates were labelled with 13C and their contribution to root respiration was continuously measured during a 24 h day/night cycle. PFD conditions during labelling were either those of the pre-treatments (control, 25 or 6 mol m-2 d-1) or, for high PFD plants, 6 mol m-2 d-1 by shortening the photoperiod or reducing irradiance. The fraction of new C in the respiratory CO2 increased during the light period, but remained constant in the dark period. In control plants, R new contributed 40 % to the daily root respiration in high PFD/high N conditions. Continuously low PFD increased (50 %) and low N decreased (26 %) the contribution of R new. Exposing plants from high PFD pre-treatments to a short photoperiod or to low PFD stimulated R old, indicating mobilisation of reserve C. This stimulation was more pronounced in plants with high N supply than in those with low N supply. Comparison with other legumes suggested that R new in root respiration was mainly defined by the ratio between the assimilatory capacity of the shoots and the maintenance costs of roots with a short-term capacity of buffering respiratory demand by mobilisation of reserves in situations of fluctuating PFD.  相似文献   

13.
Under full–spectrum white light, feeding success of haddock Melanogrammus aeglefinus first feeding larvae, as measured both by proportion of larvae feeding and mean prey consumed, peaked at 1·7-18 μmol s-1 m-2. Feeding was significantly reduced at lower and higher intensities. A similar result was observed for larvae feeding under blue (470 nm) light, with significantly greater feeding success at intermediate light intensity (1·8 μmol s-1 m-2). When different light qualities were compared, larvae had significantly greater feeding success when exposed to blue (470 nm) light than either full-spectrum white or green (530 nm) light. Haddock larvae were capable of prey capture under all light treatments tested, indicating a necessary degree of adaptive flexibility in feeding response. The results are consistent with predisposition of haddock larvae to optimal feeding in a visual environment comparable with open ocean nursery grounds. Information on the impact of light on haddock first feeding can be incorporated into models of larval growth, survival, year-class strength and recruitment, and assist in developing husbandry protocols to maximize larval survival in aquaculture.  相似文献   

14.
Abstract. The response of stomatal conductance to broadband blue and red light was measured in whole shoots of Scots pine and Sitka spruce, two species which have low stomatal sensitivity to CO2. In Scots pine, blue light was more than three times more effective than red light (on an incident quantum basis) in opening stomata, particularly at low quantum flux densities (<100μmiol m−2 s−1). However, the apparent quantum yield of net CO2 assimilation rate in blue light was only half that in red light. The contrasting effects of red and blue light on conductance and assimilation led to higher intercellular CO2 concentrations (Ci) in blue light (up to 100 μmol mol−1 higher) than in red light. Similar results were obtained with Sitka spruce shoots, though differences in the effectiveness of red and blue light were less marked. In both species, both red and blue light increased conductance in normal and CO2-free air, indicating that neither red nor blue light exert effects through changes in Ci or mesophyll assimilation. However, decreases in Ci caused increases in conductance in both red and blue light, suggesting that these direct effects of light are not wholly independent of CO2.  相似文献   

15.
Seedlings of Pinus sylvestris were grown for 6 weeks under natural light conditions in a temperature controlled environment room. Cuttings from these plants were rooted in tap water or in indolebutyric acid (IBA) solutions for 60 days at an irradiance of 16 W m-2. Experiments were performed at 3-week intervals during two growth seasons. — Seasonal changes in root formation were found in control cuttings as well as in IBA treated cuttings. The number of roots and the percentage of cuttings that rooted were high during early spring and autumn. During the summer period hardly any roots were formed. Stimulation of root formation by IBA occurred manily during spring and autumn when cuttings already possessed the ability to form roots. — The influence of photoperiod during stock plant growth was also investigated. Shorter photoperiod resulted in an increase in the number of roots and rooting percentage. The period during summer where rooting was inhibited under natural light conditions was considerably shortened when stock plants were grown at a photoperiod of only 4 h. The results demonstrate the importance of the growing conditions for stock plants for subsequent root formation. The results are discussed with special reference to the role of irradiance.  相似文献   

16.
The rate of oxygen evolution of the tropical red alga Kappaphycus alvarezii (Doty) Doty was measured for 6 days in the laboratory using a computer-aided method for long-term recording. In cool white light, Kappaphycus exhibited a robust circadian rhythm of O2 evolution in the irradiance range of 100 to 1000 μmol photons·m 2·s 1. With increasing irradiance, the period of the free-running rhythm, τ, decreased in blue and increased in red light but did not change significantly in green light. The accelerating or slowing action of blue or red light, respectively, points to two photoreceptors used in the light transduction pathway of the circadian oscillator controlling oxygen evolution or the light reactions of photosynthesis in Kappaphycus. No significant changes of τ were observed with increasing irradiance in cool white light, possibly due to the additive opposing responses caused by blue and red light.  相似文献   

17.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

18.
Transverse electrical potentials were induced by 435.8 nm light, with lateral illumination of coleoptiles of Avena sativa L. cv. Blenda. The potentials were recorded with the aid of the vibrating electrode technique, thus avoiding touching of the plants. The light dose was varied by changing the illumination time, the irradiance always being 3.9.10-3 W m-2. The transverse potential varied in time after the start of illumination and the magnitude of it was dose-dependent. Maximum voltages recorded were of the order of 15 mV, the illuminated side of the coleoptile then being negative with respect to the shaded side. Dose response curves were constructed and were very similar to dose response curves published in the literature for phototropic (blue light induced) curvatures.  相似文献   

19.
Rooting ability was studied for cuttings derived from stock plants of wild type pea seedlings and seedings of two mutants deficient in photosystem II activity and chlorophyll. Stock plants were grown at 15, 20, 25 or 30°C at 38 W m-2. Cuttings were rooted at 20°C and at an irradiance of 16 or 38 W m-2. The rooting ability seemed to be correlated with the initial carbohydrate content only at 38 W m-2. Based on the findings of the present study it may be concluded that for pea seedlings the growth temperature is more important than photosynthesis as regards accumulation of extractable carbohydrates. During the rooting period carbohydrates are necessary for root formation, but the effect of the iradiance on the number of roots formed is not mediated by the carbohydrate content. Under specific rooting conditions it is possible to correlate the initial carbohydrate content with the rooting capacity of the cuttings within a phenotype, but not always when different phenotypes are considered. The results indicate a connection between the metabolic activity of the cuttings and their ability to form adventitious roots.  相似文献   

20.
The effects of fluridone on guard cell morphology, chloroplast ultrastructure and accumulation of drought stress-induced abscisic acid (ABA) were studied in Vicia faba L. plants grown under different light conditions. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. The appearance of defective and undeveloped stomata, and chloroplasts with a destroyed thylakoid membrane system was found in fluridone-treated plants grown at a photosynthetic photon flux (PPF) of 600 μmol m-2 s-1. Plants grown at a PPF of 40 μmol m-2 s-1 had diminished levels of ABA after imposition of dehydration. Fluridone treatment reduced the level of ABA in both unstressed and dehydrated leaves. Accumulation of ABA in the control plants was considerably reduced when they were exposed to dark periods of 24, 48 and 72 h just before imposition of the stress. Twenty-four hours after the dark treatment dehydration of the leaves resulted in a 3-fold decrease in the level of stress-induced ABA, and 72 h after dark treatment the amount of stress-induced ABA approximated the prestressed values. Fluridone-treated plants failed to accumulate ABA under water stress. In addition to functionally active chloroplasts, well-developed and functional stomata are required for drought stress to elicit a rise in ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号