共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton. 相似文献
7.
8.
9.
10.
Zentella R Mascorro-Gallardo JO Van Dijck P Folch-Mallol J Bonini B Van Vaeck C Gaxiola R Covarrubias AA Nieto-Sotelo J Thevelein JM Iturriaga G 《Plant physiology》1999,119(4):1473-1482
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla. 相似文献
11.
12.
Characterization of the DNA-binding domains from the yeast cell-cycle transcription factors Mbp1 and Swi4 总被引:2,自引:0,他引:2
Taylor IA McIntosh PB Pala P Treiber MK Howell S Lane AN Smerdon SJ 《Biochemistry》2000,39(14):3943-3954
13.
14.
Inheritance of stable states of gene expression is essential for cellular differentiation. In fission yeast, an epigenetic imprint marking the mating-type (mat2/3) region contributes to inheritance of the silenced state, but the nature of the imprint is not known. We show that a chromodomain-containing Swi6 protein is a dosage-critical component involved in imprinting the mat locus. Transient overexpression of Swi6 alters the epigenetic imprint at the mat2/3 region and heritably converts the expressed state to the silenced state. The establishment and maintenance of the imprint are tightly coupled to the recruitment and the persistence of Swi6 at the mat2/3 region during mitosis as well as meiosis. Remarkably, Swi6 remains bound to the mat2/3 interval throughout the cell cycle and itself seems to be a component of the imprint. Our analyses suggest that the unit of inheritance at the mat2/3 locus comprises the DNA plus the associated Swi6 protein complex. 相似文献
15.
16.
17.
18.
Chikashige Y Tsutsumi C Okamasa K Yamane M Nakayama J Niwa O Haraguchi T Hiraoka Y 《Cell structure and function》2007,32(2):149-161
Imbalances of gene expression in aneuploids, which contain an abnormal number of chromosomes, cause a variety of growth and developmental defects. Aneuploid cells of the fission yeast Schizosaccharomyces pombe are inviable, or very unstable, during mitotic growth. However, S. pombe haploid cells bearing minichromosomes derived from the chromosome 3 can grow stably as a partial aneuploid. To address biological consequences of aneuploidy, we examined the gene expression profiles of partial aneuploid strains using DNA microarray analysis. The expression of genes in disomic or trisomic cells was found to increase approximately in proportion to their copy number. We also found that some genes in the monosomic regions of partial aneuploid strains increased their expression level despite there being no change in copy number. This change in gene expression can be attributed to increased expression of the genes in the disomic or trisomic regions. However, even in an aneuploid strain that bears a minichromosome containing no protein coding genes, genes located within about 50 kb of the telomere showed similar increases in expression, indicating that these changes are not a secondary effect of the increased gene dosage. Examining the distribution of the heterochromoatin protein Swi6 using DNA microarray analysis, we found that binding of Swi6 within ~50 kb from the telomere occurred less in partial aneuploid strains compared to euploid strains. These results suggest that additional chromosomes in aneuploids could lead to imbalances in gene expression through changes in distribution of heterochromatin as well as in gene dosage. 相似文献
19.
20.
A flow-cytometric assay, using the fluorescent dye, oxonol, for the simultaneous determination of yeast cell viability and cell number is described. The assay was optimised, and trialed at a brewery for 6 months. The flow-cytometry assay offered a substantially reduced error in viability determination, compared to methylene blue which is the industry standard for measuring viability. Further, by calculating yeast cell number at the same time, this assay provides a reliable method for determining pitching rate, allowing increased quality control of subsequent fermentations. 相似文献