首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear.  相似文献   

2.
The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed <1 s after contact with higher fibronectin surface densities. Cell treatment with microfilament inhibitors or a neutral antiintegrin antibody decreased bond number without changing aforementioned kinetic parameters whereas a function enhancing antibody increased the rate of bond formation and/or the lifetime of intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional importance of integrin clustering.  相似文献   

3.
The receptor-mediated adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This paper describes a calculational method which simulates the interaction of a single cell with a ligand-coated surface under flow. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the resulting receptor-ligand springs, the response of springs to strain, and the magnitude of the bulk hydrodynamic stresses. The model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the method can generate meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the strain of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same strain. Our analysis of neutrophil adhesive behavior on selectin-coated (CD62-coated) surfaces in viscous shear flow reported by Lawrence and Springer (Lawrence, M.B., and T.A. Springer 1991. Cell. 65:859-874) shows the fractional spring slippage of the CD62-LECAM-1 bond is likely below 0.01. We conclude the unique ability of this selectin bond to cause neutrophil rolling under flow is a result of its unique response to strain. Furthermore, our model can successfully recreate data on neutrophil rolling as function of CD62 surface density.  相似文献   

4.
D A Hammer 《Cell biophysics》1991,18(2):145-182
The adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This article describes a calculational method that allows simulation of the interaction of a single cell with a ligand-coated surface. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal, and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the springs, the response of springs to extension, and the magnitude of hydrodynamic stresses. By varying these parameters, the model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the model can provide meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the extension of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same extension. Changes in the fractional spring slippage can radically change the adhesive behavior of a cell. We show that stiffer springs will only serve to increase adhesion if the fractional slippage remains small. In addition, our simulations emphasize the importance of reaction rates between receptor and ligand, rather than affinity, as being the key determinant of adhesion under flow. These results suggest reaction rates and response to stress of adhesion molecules must be independently measured to understand how adhesion is controlled at the molecular level.  相似文献   

5.
The adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This article describes a calculational method that allows simulation of the interaction of a single cell with a ligandcoated surface. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal, and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the springs, the response of springs to extension, and the magnitude of hydrodynamic stresses. By varying these parameters, the model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the model can provide meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for ceil attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the extension of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same extension. Changes in the fractional spring slippage can radically change the adhesive behavior of a cell. We show that stiffer springs will only serve to increase adhesion if the fractional slippage remains small. In addition, our simulations emphasize the importance of reaction rates between receptor and ligand, rather than affinity, as being the key determinant of adhesion under flow. These results suggest reaction rates and response to stress of adhesion molecules must be independently measured to understand how adhesion is controlled at the molecular level.  相似文献   

6.
Activation and extinction models for platelet adhesion   总被引:1,自引:0,他引:1  
David T  Walker PG 《Biorheology》2002,39(3-4):293-298
Adherent platelets are an important part of both thrombus formation and in certain stages of atherogenesis. Platelets can be activated by potent chemicals released from adherent platelets and adhere far more readily than unactivated ones. An analytical and numerical model is presented utilising high Peclet number for the activation and adhesion of platelets in shear flows. The model uses a similarity transformation, which characterises the relationship between convective, diffusive transport and the bulk platelet activating reaction mechanism. A first order surface reaction mechanism is used to model platelet adhesion at the wall (cell) surface. The reduced Damk?hler number, M, characterises the importance of the bulk reaction and includes both convective and diffusive terms. For a high rate of blood flow (M-->0) the activation of platelets can effectively be terminated. In contrast, for (M-->infinity) an inner layer of activated platelets exists with an infinitesimally thin reaction sheet separating activated and non-activated platelets. This characterisation by the Damk?hler number highlights results found clinically, in that thrombus forms in areas of low shear (high M) and in some cases an increased blood flow (low M) can inhibit the activation of platelets completely. The model shows the critical balance that exists between convection, diffusion and reaction.  相似文献   

7.
The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.  相似文献   

8.
The receptor-mediated adhesion of cells to ligand-coated surfaces is important in many physiological and biotechnological processes. Previously, we measured the detachment of antibody-coated spheres from counter-antibody- and protein A-coated substrates using a radial-flow detachment assay and were able to relate mechanical adhesion strength to chemical binding affinity (Kuo and Lauffenburger, Biophys. J. 65:2191-2200 (1993)). In this paper, we use "adhesive dynamics" to simulate the detachment of antibody-coated hard spheres from a ligand-coated substrate. We modeled the antibody-ligand (either counter-antibody or protein A) bonds as adhesive springs. In the simulation as in the experiments, beads attach to the substrate under static conditions. Flow is then initiated, and detachment is measured by the significant displacement of previously bound particles. The model can simulate the effects of many parameters on cell detachment, including hydrodynamic stresses, receptor number, ligand density, reaction rates between receptor and ligand, and stiffness and reactive compliance of the adhesive springs. The simulations are compared with experimental detachment data, thus relating measured bead adhesion strength to molecular properties of the adhesion molecules. The simulations accurately recreated the logarithmic dependence of adhesion strength on affinity of receptor-ligand recognition, which was seen in experiments and predicted by analytic theory. In addition, we find the value of the reactive compliance, the parameter which relates the strain of a bond to its rate of breakage, that gives the best match between theory and experiment to be 0.01. Finally, we analyzed the effect of varying either the forward or reverse rate constants as different ways to achieve the same affinity, and showed that adhesion strength depends uniquely on the equilibrium affinity, not on the kinetics of binding. Given that attachment is independent of affinity, detachment and attachment are distinct adhesive phenomena.  相似文献   

9.
The adhesion of cells to other cells or to surfaces by receptor-ligand binding in a shear field is an important aspect of many different biological processes and various cell separation techniques. The purpose of this study was to observe the adhesion of model cells with receptor molecules embedded in their surfaces to a ligand-coated surface under well-defined flow conditions in a parallel plate flow chamber. Liposomes containing glycophorin were used as the model cells to permit a variation in the adhesion parameters and then to observe the effect on adhesion. A mathematical model for cell sedimentation was created to predict the deposition time and the velocity preceding adhesion for the selection of experimental operating conditions and the methods useful for data analysis. The likelihood of cell attachment was represented by a quantity called the sticking probability which was defined as the inverse of the number of times a liposome made contact with the surface before attachment occurred. The sticking probability decreased as the cell receptor concentration was lowered from approximately 10(4) to 10(2) receptors per 4-microns diam liposome and as the shear rate increased from 5 to 22 s-1. The effect of the wall shear rate and particle diameter on detachment of liposomes from a surface was also observed.  相似文献   

10.
Homotypic adhesion of neutrophils stimulated with chemoattractant is analogous to capture on vascular endothelium in that both processes are supported by L-selectin and β2-integrin adhesion receptors. Under hydrodynamic shear, cell adhesion requires that receptors bind sufficient ligand over the duration of intercellular contact to withstand the hydrodynamic stresses. Using cone and plate viscometry to apply a uniform linear shear field to suspensions of neutrophils and flow cytometry to quantitate the size distribution of aggregates formed over the time course of formyl peptide stimulation, we conducted a detailed examination of the affect of shear rate and shear stress on the kinetics of cell aggregation. The efficiency of aggregate formation was fit from a mathematical model based on Smoluchowski's two-body collision theory. Over a range of venular shear rates (400–800 s-1), β90% of the single cells are recruited into aggregates ranging from doublets to groupings larger than sextuplets. Adhesion efficiency fit to the kinetics of aggregation increased with shear rate from β20% at 100s-1 to a maximum level of β80% at 400 s-1. This increase to peak adhesion efficiency was dependent on L-selectin and β2-integrin, and was resistant to shear stress up to β7 dyn/cm2. When L-selectin was blocked with antibody, β2-integrin (CD11a, b) supported adhesion at low shear rates (< 400 s-1). Aggregates formed over the rapid phase of aggregation remain intact and resistant to shear up to 120 s. At the end of this plateau phase of stability, aggregates spontaneously dissociate back to singlets. The rate of cell disaggregation is linearly proportional to the applied shear rate. The binding kinetics of selectin and integrin appear to be optimized to function within discrete ranges of shear rate and stress, providing an intrinsic mechanism for the transition from neutrophil tethering to firm but reversible adhesion.  相似文献   

11.
Dynamic adhesion of cells to surfaces is a vital step in a variety of biochemical and physiological phenomena. Bacterial adhesion is responsible not only for problems associated with biofouling and biofilm formation in the biochemical industry but also in the initiation of certain infectious diseases. In this study, we report the effect of critical parameters, such as receptor and ligand densities and shear rate, on receptor-mediated dynamic bacterial adhesion. Adhesion of a pathogenic strain of Staphylococcus aureus to immobilized collagen was studied. The receptor density on the cell surface was varied by harvesting cells at different growth times and was quantified using flow cytometry. Dynamic adhesion experiments were conducted over a range of physiologically relevant shear rates (50 to 1500 s(-1)) using a parallel-plate flow chamber. Video microscopy coupled with digital image processing was employed to quantify adhesion. A semiquantitative comparison between experimental results and theoretical data obtained using a previously proposed mathematical model was also performed. The results suggest that dynamic adhesion is dependent on receptor density and shear rate, but independent of ligand density. This report demonstrates the feasibility of using bacteria to study fundamental aspects of receptor-mediated dynamic adhesion.  相似文献   

12.
Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane’s nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of \(3.75\, \upmu \hbox {m}\) were represented using an elastic membrane governed by a Mooney–Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of \(150\,\upmu \hbox {m}^{-2}\) under linear shear flow varying from 100 to \(400\,\hbox {s}^{-1}\). The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of \(400\,\hbox {s}^{-1}\). Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction.  相似文献   

13.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

14.
A dynamical model for receptor-mediated cell adhesion to surfaces.   总被引:14,自引:11,他引:3       下载免费PDF全文
We present a dynamical model for receptor-mediated adhesion of cells in a shear field of viscous fluid to surfaces coated with ligand molecules complementary to receptors in the cell membrane. We refer to this model as the "point attachment model" because it considers the contact area between the cell and the surface to be a small, homogeneous region that mediates the initial attachment of the cell to the surface. Using a phase plane analysis of a system of nonlinear ordinary differential equations which govern the changes in free receptor density and bond density within the contact area with time, we can predict the conditions for which adhesion between the cell and the surface will take place. Whether adhesion occurs depends on values of dimensionless quantities that characterize the interaction of the cell and its receptors with the surface and its ligand, such as the bond formation rate, the receptor-ligand affinity, the fluid mechanical force, the receptor mobility, and the contact area. A key result is that there are two regimes in which different chemical and physical forces dominate: a rate-controlled high affinity regime and an affinity-controlled low-affinity regime. Many experimental observations can be explained by understanding which of these regimes is appropriate. We also provide simple approximate analytical solutions, relating adhesiveness to cell and surface properties as well as fluid forces, which allow convenient testing of model predictions by experiment.  相似文献   

15.
Migration of mammalian blood and tissue cells over adhesive surfaces is apparently mediated by specific reversible reactions between cell membrane adhesion receptors and complementary ligands attached to the substratum. Although in a number of systems these receptors and ligand molecules have been isolated and identified, a theory capable of predicting the effects of their properties on cell migration behavior currently does not exist. We present a simple mathematical model for elucidating the dependence of cell speed on adhesion-receptor/ligand binding and cell mechanical properties. Our model can be applied to propose answers to questions such as: does an optimal adhesiveness exist for cell movement? How might changes in receptor and ligand density and/or affinity affect the rate of migration? Can cell rheological properties influence movement speed? This model incorporates cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for persistent cell movement. A critical feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with cell polarity. We consider two major alternative mechanisms underlying this asymmetry: (a) a spatial distribution of adhesion-receptor number due to polarized endocytic trafficking and (b) a spatial variation in adhesion-receptor/ligand bond strength. Applying a viscoelastic-solid model for cell mechanics allows us to represent one-dimensional locomotion with a system of differential equations describing cell deformation and displacement along with adhesion-receptor dynamics. In this paper, we solve these equations under the simplifying assumption that receptor dynamics are at a quasi-steady state relative to cell locomotion. Thus, our results are strictly valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. Numerical examples relevant to experimental systems are provided. Our results predict how cell speed might vary with intracellular contractile force, cell rheology, receptor/ligand kinetics, and receptor/ligand number densities. A biphasic dependence is shown to be possible with respect to some of the system parameters, with position of the maxima essentially governed by a balance between transmitted contractile force and adhesiveness. We demonstrate that predictions for the two alternative asymmetry mechanisms can be distinguished and could be experimentally tested using cell populations possessing different adhesion-receptor numbers.  相似文献   

16.
Homotypic adhesion o2 neutrophils stimulated with chemoattractant is analogous to capture on vascular endothelium in that both processes depend on L-selectin and beta 2-integrin adhesion receptors. Under hydrodynamic shear, cell adhesion requires that receptors bind sufficient ligand over the duration of intercellular contact to withstand hydrodynamic stresses. Using cone-plate viscometry to apply a uniform linear shear field to suspensions of neutrophils, we conducted a detailed examination of the effect of shear rate and shear stress on the kinetics of cell aggregation. A collisional analysis based on Smoluchowski's flocculation theory was employed to fit the kinetics of aggregation with an adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency with shear was dependent on L-selectin, and peak efficiency was maintained over a relatively narrow range of shear rates (400-800 s-1) and shear stresses (4-7 dyn/cm2). When L-selectin was blocked with antibody, beta 2-integrin (CD11a, b) supported adhesion at low shear rates (< 400 s-1). The binding kinetics of selectin and integrin appear to be optimized to function within discrete ranges of shear rate and stress, providing an intrinsic mechanism for the transition from neutrophil tethering to stable adhesion.  相似文献   

17.
The adhesive properties of the mouse P388D1 macrophage-like line were explored. Cells were deposited in glass capillary tubes, and the kinetics of adhesion and spreading were studied. Binding involved the cell metabolism since it was decreased by cold, azide, or a divalent cation chelator. Glass-adherent cells were subjected to calibrated laminar shear flows with a highly viscous dextran solution. A tangential force of about 5 X 10(-3) dyn/cell was required to achieve substantial detachment. The duration of application of the shearing force strongly influenced cell-substrate separation when this was varied from 1-10 s. Further, this treatment resulted in marked cell deformation, with the appearance of an elongated shape. Hence, cell-substrate separation is a progressive process, and binding strength is expected to be influenced by cell deformability. The minimum time required for adhesion was also investigated by making cells adhere under flow conditions. The maximum flow rate compatible with adhesion was about 1000-fold lower than that required to detach glass-bound cells. A simple model was devised to provide a quantitative interpretation for the experimental results of kinetic studies. It is concluded that cell-to-glass adhesion required a cell-substrate contact longer than a few seconds. This first step of adhesion was rapidly followed by a large (about 1000-fold) increase of adhesion strength. It is therefore emphasized that adhesion is heavily dependent on the duration of cell-to-cell encounter, as well as the force used to remove so-called unbound cells.  相似文献   

18.
This study compares the effects offluid shear on the kinetics, adhesion efficiency, stability, andmolecular requirements of polymorphonuclear leukocyte (PMN) binding totwo colon adenocarcinoma cell-lines, theCD54-negative/sLex-bearing LS174T cells and theCD54-expressing/sLex-low HCT-8 cells. The efficiency ofPMN-colon carcinoma heteroaggregation decreases with increasing shear,with PMNs binding HCT-8 more efficiently than LS174T cells at low shear(50-200 s1). In the low shear regime, CD11b issufficient to mediate PMN binding to LS174T cells. In contrast, bothCD11a and CD11b contribute to PMN-HCT-8 heteroaggregation, with CD54 onHCT-8 cells acting as a CD11a ligand at early time points. At highshear, only PMN-LS174T heteroaggregation occurs, which is initiated byPMN L-selectin binding to a sialylated, O-linked, protease-sensitiveligand on LS174T cells. PMN-LS174T heteroaggregation is primarilydependent on the intercellular contact duration (or shear rate),whereas PMN-HCT-8 binding is a function of both the intercellularcontact duration and the applied force (or shear stress). Cumulatively, these studies suggest that fluid shear modulates the kinetics andmolecular mechanisms of PMN-colon carcinoma cell aggregation.

  相似文献   

19.
Selectin counterreceptors are glycoprotein scaffolds bearing multiple carbohydrate ligands with exceptional ability to tether flowing cells under disruptive shear forces. Bond clusters may facilitate formation and stabilization of selectin tethers. L-selectin ligation has been shown to enhance L-selectin rolling on endothelial surfaces. We now report that monoclonal antibodies-induced L-selectin dimerization enhances L-selectin leukocyte tethering to purified physiological L-selectin ligands and glycopeptides. Microkinetic analysis of individual tethers suggests that leukocyte rolling is enhanced through the dimerization-induced increase in tether formation, rather than by tether stabilization. Notably, L-selectin dimerization failed to augment L-selectin-mediated adhesion below a threshold ligand density, suggesting that L-selectin dimerization enhanced adhesiveness only to properly clustered ligand. In contrast, an epidermal growth factor domain substitution of L-selectin enhanced tether formation to L-selectin ligands irrespective of ligand density, suggesting that this domain controls intrinsic ligand binding properties of L-selectin without inducing L-selectin dimerization. Strikingly, at low ligand densities, where L-selectin tethering was not responsive to dimerization, elevated shear stress restored sensitivity of tethering to selectin dimerization. This is the first indication that shear stress augments effective selectin ligand density at local contact sites by promoting L-selectin encounter of immobilized ligand.  相似文献   

20.
Autocrine ligands have been demonstrated to regulate cell proliferation, cell adhesion, and cell migration in a number of different systems and are believed to be one of the underlying causes of malignant cell transformation. Binding of these ligands to their cellular receptors can be compromised by diffusive transport of ligand away from the secreting cell. Exogenous addition of antibodies or solution receptors capable of competing with cellular receptors for these autocrine ligands has been proposed as a means of inhibiting autocrine-stimulated cell behavioral responses. Such "decoys" complicate cellular binding by offering alternative binding targets, which may also be capable of aiding or abating transport of the ligand away from the cell surface. We present a mathematical model incorporating autocrine ligand production and the presence of competing cellular and solution receptors. We elucidate effects of key system parameters including ligand diffusion rate, binding rate constants, cell density, and secretion rate on the ability of solution receptors to inhibit cellular receptor binding. Both plated and suspension cell systems are considered. An approximate analytical expression relating the key parameters to the critical concentration of solution "decoys" required for inhibition is derived and compared to the numerical calculations. We find that in order to achieve essentially complete inhibition of surface receptor binding, the concentration of decoys may need to be as much as four to eight orders of magnitude greater than the equilibrium disociation constant for ligand binding to surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号