首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anuran amphibians are known to exhibit an intermittent pattern of pulmonary ventilation and to exhibit an increased ventilatory response to hypoxia and hypercarbia. However, only a few species have been studied to date. The aquatic frog Pipa carvalhoi inhabits lakes, ponds and marshes that are rich in nutrients but low in O(2). There are no studies of the respiratory pattern of this species and its ventilation during hypoxia or hypercarbia. Accordingly, the aim of the present study was to characterize the breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in this species. With this purpose, pulmonary ventilation (V(I)) was directly measured by the pneumotachograph method during normocapnic normoxia to determine the basal respiratory pattern and during aerial and aquatic hypercarbia (5% CO(2)) and hypoxia (5% O(2)). Our data demonstrate that P. carvalhoi exhibits a periodic breathing pattern composed of single events (single breaths) of pulmonary ventilation separated by periods of apnea. The animals had an enhanced V(I) during aerial hypoxia, but not during aquatic hypoxia. This increase was strictly the result of an increase in the breathing frequency. A pronounced increase in V(I) was observed if the animals were simultaneously exposed to aerial and aquatic hypercarbia, whereas small or no ventilatory responses were observed during separately administered aerial or aquatic hypercarbia. P. carvalhoi primarily inhabits an aquatic environment. Nevertheless, it does not respond to low O(2) levels in water, although it does so in air. The observed ventilatory responses to hypercarbia may indicate that this species is similar to other anurans in possessing central chemoreceptors.  相似文献   

2.
This study examined the location and distribution of O2 chemoreceptors involved in cardio-respiratory responses to hypoxia in the neotropical teleost, the pacu (Piaractus mesopotamicus). Intact fish and fish experiencing progressive gill denervation by selective transection of cranial nerves IX and X were exposed to gradual hypoxia and submitted to intrabuccal and intravenous injections of NaCN while their heart rate, ventilation rate and ventilation amplitude were measured. The chemoreceptors producing reflex bradycardia were confined to, but distributed along all gill arches, and were sensitive to O2 levels in the water and the blood. Ventilatory responses to all stimuli, though modified, continued following gill denervation, however, indicating the presence of internally and externally oriented receptors along all gill arches and either in the pseudobranch or at extra-branchial sites. Chemoreceptors located on the first pair of gill arches and innervated by the glossopharyngeal nerve appeared to attenuate the cardiac and respiratory responses to hypoxia. The data indicate that the location and distribution of cardio-respiratory O2 receptors are not identical to those in tambaqui (Colossoma macropomum) despite their similar habitats and close phylogenetic lineage, although the differences between the two species could reduce to nothing more than the presence or absence of the pseudobranch.  相似文献   

3.
Evidence of a role for catecholamines in the control of breathing in fish   总被引:1,自引:0,他引:1  
Summary Our current knowledge of the control of ventilation in fish is incomplete at all levels. The respiratory rhythm originates in a medullary central pattern generator (CPG), which has yet to be clearly identified and characterized. Its activity is directly modulated by inputs from elsewhere in the CNS and from peripheral mechanoreceptors. The central location of respiratory motoneurones, innervating the various respiratory muscles, has been described in detail for some fish, particularly elasmobranchs. We are still unclear, however, about the link between the CPG and the sequential firing of the motoneurones, which result in coordinated contractions of the respiratory muscles, and about the mechanisms that result in recruitment of feeding muscles into forced ventilation. In teleosts, ventilation is matched to oxygen requirements by stimulation of gill chemoreceptors, which seem to respond to oxygen content or supply. There is little evidence of a role for these receptors in elasmobranchs.Chemoreceptor stimulation evokes a number of reflex changes in the respiratory and cardiovascular systems of fish that are rapid in onset and seem adaptive (e.g. increased ventilation and a bradycardia in response to hypoxia). Conditions that result in hypoxaemia and the consequent ventilatory changes also cause an elevation in circulating catecholamine levels. We have explored the possibility of a causal relationship between these levels and the ventilatory response. Strong evidence for this relationship arises from experiments on hypoxia and acid infusion, which trigger a ventilatory increase and a rise in circulating catecholamines. Both ventilatory responses are blocked by an injection of propranolol, indicating that adrenoreceptors are involved in the response.The ventilatory response to hypoxia, in teleosts at least, occurs very rapidly, perhaps before any marked increase in circulating catecholamines and almost certainly before any blood-borne catecholamines could reach the respiratory neurones. This argues for an immediate neuronal reflex based on chemoreceptors in the gill region responding to hypoxia. Clearly, circulating catecholamines also affect ventilation through some action in the medulla and could act in concert with a direct neuronal chemoreceptive drive during hypoxia. The studies on acid infusion during hyperoxia, where there is an acidosis but no increase in ventilation or blood catecholamines, would argue against any hydrogen ion receptor, either peripheral or central, being involved in the reflex ventilatory response to acidotic conditions in fish.The release of catecholamines into the circulation, therefore, seems to be an absolute requirement for the ventilatory response to acidosis in fish. Present evidence supports a role for -adrenergic receptors on respiratory neurones, stimulated by changes in the levels of circulating catecholamines, in the control of ventilatory responses to marked changes in oxygen availability in fish, such as those occurring in the post-exercise acidotic state.  相似文献   

4.
SYNOPSIS: Intertidal rockpools provide a challenging environmentfor rockpool fish with rapid changes taking place in many environmentalparameters over a tidal cycle. Intertidal fish exhibit a numberof behavioural adaptations such as the avoidance of hypoxicsituations or remaining inactive during aerial "stranding."Other species are, however, well adapted to breathe air andexhibit morphological adaptations such as smaller gill areas,specialized buccopharyngeal epithelia and a proliferation ofcutaneous blood vessels in the skin. Oxygen consumption in rockpoolfish is comparable to non-intertidal fish and responds in asimilar manner to temperature changes. The ability to regulateoxygen consumption down to oxygen tensions below 40 Torr is,however, marked in rockpool species. Aerial and aquatic ratesof respiration are similar in those species which are able tobreathe air and the respiratory quotient normally remains between0.7 and 0.9. A number of intertidal fish are well adapted forcutaneous respiration, satisfying over half of their oxygenand carbon dioxide exchange through the skin. Ventilatory responsesto increased temperature, hyperoxia and hypoxia are similarto those of other fish but cardiac responses may differ in thatno change in heart rate is seen under hypoxia or hyperoxia.Ventilatory and cardiac responses to aerial respiration arewell adapted in some species maintaining ventilation and perfusionduring aerial exposure. A marked Bohr effect, low temperaturesensitivity and a temperature dependent Haldane effect havebeen measured in the haemoglobolin of some intertidal fish.These properties may assist oxygen transport and carbon dioxideexchange during cyclical changes in environmental parameterswithin an intertidal rockpool.  相似文献   

5.
The jeju, Hoplerythrinus unitaeniatus, is equipped with a modified part of the swim bladder that allows aerial respiration. On this background, we have evaluated its respiratory and cardiovascular responses to aquatic hypoxia. Its aquatic O2 uptake (V(O2)) was maintained constant down to a critical P(O2) (P(cO2)) of 40 mm Hg, below which V(O2) declined linearly with further reductions of P(iO2). Just below P(cO2), the ventilatory tidal volume (V(T)) increased significantly along with gill ventilation (V(G)), while respiratory frequency changed little. Consequently, water convection requirement (V(G)/V(O2)) increased steeply. The same threshold applied to cardiovascular responses that included reflex bradycardia and elevated arterial blood pressure (P(a)). Aerial respiration was initiated at water P(O2) of 44 mm Hg and breathing episodes and time at the surface increased linearly with more severe hypoxia. At the lowest water P(O2) (20 mm Hg), the time spent at the surface accounted for 50% of total time. This response has a character of a temporary emergency behavior that may allow the animal to escape hypoxia.  相似文献   

6.
In humans exposed to 8 h of isocapnic hypoxia, there is a progressive increase in ventilation that is associated with an increase in the ventilatory sensitivity to acute hypoxia. To determine the relative roles of lowered arterial PO2 and oxygen content in generating these changes, the acute hypoxic ventilatory response was determined in 11 subjects after four 8-h exposures: 1) protocol IH (isocapnic hypoxia), in which end-tidal PO2 was held at 55 Torr and end-tidal PCO2 was maintained at the preexposure value; 2) protocol PB (phlebotomy), in which 500 ml of venous blood were withdrawn; 3) protocol CO, in which carboxyhemoglobin was maintained at 10% by controlled carbon monoxide inhalation; and 4) protocol C as a control. Both hypoxic sensitivity and ventilation in the absence of hypoxia increased significantly after protocol IH (P < 0.001 and P < 0.005, respectively, ANOVA) but not after the other three protocols. This indicates that it is the reduction in arterial PO2 that is primarily important in generating the increase in the acute hypoxic ventilatory response in prolonged hypoxia. The associated reduction in arterial oxygen content is unlikely to play an important role.  相似文献   

7.
When exposed to severely hypoxic water, many teleosts skim the better oxygenated surface layer (aquatic surface respiration, ASR). Information is scarce concerning the thresholds triggering ASR and its cardio-respiratory consequences. To assess the ambient conditions leading to ASR and to evaluate its effects on cardio-respiratory function, we exposed specimens of Piaractus mesopotamicus to gradual hypoxia (water oxygen tension ranging from 120 to 10 torr) with or, alternatively, without access to the surface. Concurrently, ASR, cardiac and respiratory frequencies, O2 uptake and gill ventilation were monitored. With surface access, ASR developed below the critical tension for O2 uptake (34 torr) by normal gill ventilation. Moreover, the time spent in ASR increased with prolonged hypoxic exposure to a maximum of 95% of total time. Without surface access, the species exhibited hypoxic bradycardia, that had not occurred in the group with fully developed ASR. Even without ASR, P. mesopotamicus recovered readily from hypoxic exposure, showing that this species possesses a number of mechanisms to cope with environmental hypoxia.  相似文献   

8.
Intermittent hypoxic exposure (IHE) has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7×1 hour at 4500 m). The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude) at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05). There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = −0.72, p<0.05). Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01) and minute ventilation (r = 0.54, p<0.01). Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.  相似文献   

9.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

10.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

11.
The BIO 14.6 hamster (dystrophic), animal model of limb girdle muscular dystrophy, exhibits low plasma triiodothyronine levels, muscle weakness, and decreased breathing. After exposure to acute intermittent bouts of hypoxia, dystrophic hamsters depress ventilation relative to baseline resulting in ventilatory long-term depression (LTD). Control hamsters may increase ventilation relative to baseline resulting in ventilatory long-term facilitation (LTF). Serotonin (5-HT) receptors, especially the 5-HT(2A) subtype, are involved in the development of LTF. The purpose of this study was to evaluate the role of 5-HT(2A) receptors in ventilatory and metabolic responses before, during, and following intermittent hypoxia in eleven euthyroid, nine dystrophic, and eleven propylthiouracil (PTU)-induced hypothyroid male hamsters. Animals received subcutaneous injections of vehicle or 0.5 mg/kg MDL (5-HT(2A) receptor antagonist). Plethysmography was used to evaluate ventilatory responses of the three groups to air, five bouts of 5 min of 10% oxygen, each interspersed with 5 min of air, followed by 60 min of exposure to air. CO(2) production was measured using the flow-through method. Vehicle-treated dystrophic and PTU-treated hamsters exhibited LTD. MDL decreased body temperature in all groups. After MDL treatment, the euthyroid group exhibited LTD. MDL treatment in the dystrophic, but not in the PTU-treated hamsters, maintained tidal volume, but did not reverse LTD. CO(2) production was increased in the euthyroid group with MDL treatment. Thus, 5-HT(2A) receptors affect body temperature, ventilation, and metabolism in hamsters. The differential responses noted in this study may be in part dependent on thyroid hormone status.  相似文献   

12.
Lymnaea stagnalis were exposed to hypoxic and chemical challenges while ventilation, heart rate and metabolism were monitored. Hypoxia increased ventilatory behavior, but this response was eliminated by immersion in 0.75 mM nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7 NI). 7 NI also suppressed ventilatory behavior under normoxia. 10.0 mM L-arginine (ARG, the NOS substrate) increased ventilatory behavior under normoxia, but dampened the hypoxic response. The heart-rate response to NOS inhibition exhibited dose-dependent contradictory characteristics. Under both normoxia and hypoxia 0.25 mM 7 NI increased heart rate, while 0.75 mM 7 NI suppressed it. The effect of 0.50 mM 7 NI depended on whether normoxia or hypoxia was coincident; under normoxia 0.50 mM 7 NI increased heart rate, while under hypoxia this concentration suppressed heart rate. Exposure to ARG did not elicit dose-dependent contradictory responses. Heart rate increased when treated with 10.0 mM ARG under normoxia and hypoxia, while 1.0 mM ARG increased heart rate only under hypoxia. Metabolic responses to NOS inhibition also exhibited dose-dependent contradictory changes. V.O2 decreased over 60% in response to 0.75 mM 7 NI, and baseline V.O2 was restored when exposure ceased. In contrast, 0.25 mM 7 NI increased V.O2 10%, and the increase continued after exposure ceased. 0.50 mM 7 NI decreased V.O2 40%, but V.O2 increased when exposure ceased. ARG had only the effect of increasing V.O2, and only at 10.0 mM concentration. Based on these results and on NO's known role as a neuromodulator, we conclude that the cardio-respiratory responses to hypoxia are, in part, mediated by NO.  相似文献   

13.
Ventilation volume, ventilatory frequency, ventilatory stroke volume, percentage utilization of oxygen and respiratory metabolism were measured on unanaesthetized striped mullet, Mugil cephalus L., under ambient and hypoxic conditions with a modified van Dam respiration chamber. Hypoxia caused a statistically significant increase in ventilation volume, ventilatory frequency, and ventilatory stroke volume and a significant decrease in percentage utilization of oxygen. The routine rate of respiratory metabolism was not significantly altered by hypoxia. These responses probably represent ventilatory adjustments which serve to maintain a constant oxygen supply to the gills under conditions of oxygen depletion.  相似文献   

14.
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it appears to possess both well-developed gills and a modified swim bladder that functions as an air-breathing organ indicating a high capacity for both aquatic and aerial respiration. Using newly developed bimodal intermittent-closed respirometry, the partitioning of oxygen consumption in normoxia and hypoxia was investigated in P. hypophthalmus. In addition the capacity for aquatic breathing was studied through measurements of oxygen consumption when access to air was denied, both in normoxia and hypoxia, and the critical oxygen tension, Pcrit, was also determined during these experiments. Finally, gill ventilation and air-breathing frequency were measured in a separate experiment with pressure measurements from the buccal cavity. The data showed that P. hypophthalmus is able to maintain standard metabolic rate (SMR) through aquatic breathing alone in normoxia, but that air-breathing is important during hypoxia. Gill ventilation was reduced during air-breathing, which occurred at oxygen levels below 8 kPa, coinciding with the measured Pcrit of 7.7 kPa. The findings in this study indicate that the introduction of aeration into the aquaculture of P. hypophthalmus could potentially reduce the need to air-breathe. The possibility of reducing air-breathing frequency may be energetically beneficial for the fish, leaving more of the aerobic scope for growth and other activities, due to the proposed energetic costs of surfacing behavior.  相似文献   

15.
During the first day of hatching, the developing chicken embryo internally pips the air cell and relies on both the lungs and chorioallantoic membrane (CAM) for gas exchange. Our objective in this study was to examine respiratory and cardiovascular responses to acute changes in oxygen at the air cell or the rest of the egg during internal pipping. We measured lung (VO2(lung)) and CAM (VO2(CAM)) oxygen consumption independently before and after 60 min exposure to combinations of hypoxia, hyperoxia, and normoxia to the air cell and the remaining egg. Significant changes in VO2(total) were only observed with combined egg and air cell hypoxia (decreased VO2(total)) or egg hyperoxia and air cell hypoxia (increased VO2(total)). In response to the different O2 treatments, a change in VO2(lung) was compensated by an inverse change in VO2(CAM) of similar magnitude. To test for the underlying mechanism, we focused on ventilation and cardiovascular responses during hypoxic and hyperoxic air cell exposure. Ventilation frequency and minute ventilation (V(E)) were unaffected by changes in air cell O2, but tidal volume (V(T)) increased during hypoxia. Both V(T) and V(E) decreased significantly in response to decreased P(CO2). The right-to-left shunt of blood away from the lungs increased significantly during hypoxic air cell exposure and decreased significantly during hyperoxic exposure. These results demonstrate the internally pipped embryo's ability to control the site of gas exchange by means of altering blood flow between the lungs and CAM.  相似文献   

16.
That ventilation in fish is driven by O2 has long been accepted. The O2 ventilatory drive reflects the much lower capacitance of water for O2 than for CO2, and is mediated by O2 receptors that are distributed throughout the gill arches and that monitor both internal and external O2 levels. In recent years, however, evidence has amassed in support of the existence of a ventilatory drive in fish that is keyed to CO2 and/or pH. While ventilatory responses to CO2/pH may be mediated in part by the O2 drive through CO2/pH-induced changes in blood O2 status, CO2/pH also appear to stimulate ventilation directly. The receptors involved in this pathway are as yet unknown, but the experimental evidence available to date supports the involvement of branchial CO2-sensitive chemoreceptors with an external orientation. Internally-oriented CO2-sensitive chemoreceptors may also be involved, although evidence on this point remains equivocal. In the present paper, the evidence for a CO2/pH-keyed ventilatory drive in fish will be reviewed.  相似文献   

17.
Circulating catecholamine levels and a variety of cardiorespiratory variables were monitored in cannulated bimodally breathing African lungfish (Protopterus dolloi) exposed to aquatic or aerial hypoxia. Owing to the purported absence of external branchial chemoreceptors in lungfish and the minor role played by the gill in O2 uptake, it was hypothesized that plasma catecholamine levels would increase only during exposure of fish to aerial hypoxia. The rapid induction of aquatic hypoxia (final PWo2 = 25.9+/-1.6 mmHg) did not affect the levels of adrenaline (A) or noradrenaline (NA) within the plasma. Similarly, none of the measured cardiorespiratory variables--including heart rate (fH), blood pressure, air-breathing frequency (fV), O2 consumption (Mo2), CO2 excretion (Mco2), or blood gases--were influenced by acute aquatic hypoxia. In contrast, however, the rapid induction of aerial hypoxia (inspired Po2=46.6+/-3.3 mmHg) caused a marked increase in the circulating levels of A (from 7.9+/-2.0 to 18.8+/-6.1 nmol L(-1)) and NA (from 7.7+/-2.2 to 19.7+/-6.3 nmol L(-1)) that was accompanied by significant decreases in Mo2, arterial Po2 (Pao2), and arterial O2 concentration (Cao2). Air-breathing frequency was increased (by approximately five breaths per hour) during aerial hypoxia and presumably contributed to the observed doubling of pulmonary Mco2 (from 0.25+/-0.04 to 0.49+/-0.07 mmol kg(-1) h(-1)); fH and blood pressure were unaffected by aerial hypoxia. An in situ perfused heart preparation was used to test the possibility that catecholamine secretion from cardiac chromaffin cells was being activated by a direct localized effect of hypoxia. Catecholamine secretion from the chromaffin cells of the heart, while clearly responsive to a depolarizing concentration of KCl (60 mmol L(-1)), was unaffected by the O2 status of the perfusion fluid. The results of this study demonstrate that P. dolloi is able to mobilize stored catecholamines and increase f(V) during exposure to aerial hypoxia while remaining unresponsive to aquatic hypoxia. Thus, unlike in exclusively water-breathing teleosts, P. dolloi would appear to rely solely on internal/airway O2 chemoreceptors for initiating catecholamine secretion and cardiorespiratory responses.  相似文献   

18.
Ventilatory responses of crabs Carcinus maenas (L.) to changes in ambient oxygen and carbon dioxide were studied in field and laboratory experiments, over a range of PwO2 and Pwco2 conditions encompassing natural variations observed in intertidal rock-pools. Ventilatory activity was assessed by recording gill chamber hydrostatic pressure and estimating the specific ventilation, Vw/MO2, the reciprocal of the difference of oxygen concentrations in inspired and expired waters.

Variations in ambient oxygenation always induced large changes of ventilatory activity, hyperventilation in hypoxia, hypoventilation in hyperoxia. Conversely, PwCO2 changes either at constant PO2 or in combination with different PO2 values (hypoxic hypercapnia or hyperoxic hypocapnia) led only to small or even non-significant ventilatory responses. In the field, strong hyperventilation developed during tidal exposure at night, when the pool water became hypoxic and hypercapnic, whereas during the day the animals hypoventilated in progressively more hyperoxic and hypocapnic conditions.

Thus, in a typical intertidal animal such as C. maenas, the only ventilatory stimulus of ecological significance appears to be the ambient water oxygenation.  相似文献   


19.
During hypoxia, oxyregulating water-breathers usually control O2 uptake by changing ventilatory convection. Using optical techniques we studied ventilation, circulation and respiratory control in small animals, a millimetre in size, which were more or less pronounced oxyregulators (Daphnia magna, Folsomia candida). In Daphnia we found no adaptive changes in the ventilatory water flow rate during hypoxia. Frequency and amplitude of the movements of the thoracic limbs remained constant during this environmental condition. During anoxia there was a reduction in both. In contrast to ventilatory convection, the circulatory blood flow rate adapted to hypoxia. At low oxygen partial pressures, the heart frequency strongly increased (compensatory tachycardia) in Daphnia, whereas the stroke volume remained constant. Accordingly, there was an increase in cardiac output during hypoxia. Folsomia also showed a marked increase of heart frequency during severe hypoxia. The adaptive changes in blood flow rate should help to maintain sufficient partial pressure differences between medium, blood and tissues and should help to avoid anoxic zones in the animal. During anoxia, the heart continued to beat in Daphnia (at a rate more or less similar to normoxia, but with a reduced stroke volume) for periods of many hours. The heart frequency showed typical courses during anoxia and subsequent normoxia, which are probably related to energy metabolism. Accepted: 28 February 1997  相似文献   

20.
Proteins harboring a Per-Arnt-Sim (PAS) domain are versatile and allow archaea, bacteria, and plants to sense oxygen partial pressure, as well as light intensity and redox potential. A PAS domain associated with a histidine kinase domain is found in FixL, the oxygen sensor molecule of Rhizobium species. PASKIN is the mammalian homolog of FixL, but its function is far from being understood. Using whole body plethysmography, we evaluated the ventilatory response to acute and chronic hypoxia of homozygous deficient male and female PASKIN mice (Paskin-/-). Although only slight ventilatory differences were found in males, female Paskin-/- mice increased ventilatory response to acute hypoxia. Unexpectedly, females had an impaired ability to reach ventilatory acclimatization in response to chronic hypoxia. Central control of ventilation occurs in the brain stem respiratory centers and is modulated by catecholamines via tyrosine hydroxylase (TH) activity. We observed that TH activity was altered in male and female Paskin-/- mice. Peripheral chemoreceptor effects on ventilation were evaluated by exposing animals to hyperoxia (Dejours test) and domperidone, a peripheral ventilatory stimulant drug directly affecting the carotid sinus nerve discharge. Male and female Paskin-/- had normal peripheral chemosensory (carotid bodies) responses. In summary, our observations suggest that PASKIN is involved in the central control of hypoxic ventilation, modulating ventilation in a gender-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号