首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A skeletal muscle membrane fraction enriched in sarcoplasmic reticulum (SR) contained Ca2+-ATPase activity which was stimulated in vitro in normal chickens (line 412) by 6 nM purified bovine calmodulin (33% increase over control, P less than 0.001). In contrast, striated muscle from chickens (line 413) affected with an inherited form of muscular dystrophy, but otherwise genetically similar to line 412, contained SR-enriched Ca2+-ATPase activity which was resistant to stimulation in vitro by calmodulin. Basal levels of Ca2+-ATPase activity (no added calmodulin) were comparable in muscles of unaffected and affected animals, and the Ca2+ optima of the enzymes in normal and dystrophic muscle were identical. Purified SR vesicles, obtained by calcium phosphate loading and sucrose density gradient centrifugation, showed the same resistance of dystrophic Ca2+-ATPase to exogenous calmodulin as the SR-enriched muscle membrane fraction. Dystrophic muscle had increased Ca2+ content compared to that of normal animals (P less than 0.04) and has been previously shown to contain increased levels of immuno- and bioactive calmodulin and of calmodulin mRNA. The calmodulin resistance of the Ca2+-ATPase in dystrophic muscle reflects a defect in regulation of cell Ca2+ metabolism associated with elevated cellular Ca2+ and calmodulin concentrations.  相似文献   

2.
The effects of calmodulin and of controlled trypsin treatments on the activity of the Ca2+ pump were investigated in plasma membrane purified from radish (Raphanus sativus L.) seedlings. Treatment of the plasma membrane with ethylenediaminetetra-acetate (EDTA), which removed about two-thirds of the plasma membrane-associated calmodulin, markedly increased the stimulation of the Ca2+ pump by calmodulin. In EDTA-treated plasma membrane, stimulation by calmodulin of the Ca2+ pump activity was maximal at low free Ca2+ (2-5 [mu]M) and decreased with the increase of free Ca2+ concentration. The Ca2+ pump activity was stimulated also by a controlled treatment of the plasma membrane with trypsin: the effect of trypsin treatment depended on the concentration of both trypsin and plasma membrane proteins and on the duration of incubation. Stimulation of the Ca2+ pump activity by trypsin treatment of the plasma membrane was similar to that induced by calmodulin both in extent and in dependence on the free Ca2+ concentration in the assay medium. Moreover, the Ca2+ pump of trypsin-treated plasma membrane was insensitive to further stimulation by calmodulin, suggesting that limited proteolysis preferentially cleaves a regulatory domain of the enzyme that is involved in its activation by calmodulin.  相似文献   

3.
In an initial attempt to use calmodulin antagonists as probes to study the role of calmodulin in the modulation of Ca2+ uptake activity in the endoplasmic reticulum of rat liver, we noticed that W7 had a differential effect on the Ca2+ uptake and Ca2+-ATPase activities. To test the specificity of this effect and explore the underlying mechanism, we examined the effects of W7 on Ca2+ accumulation and release by endoplasmic reticulum in both permeabilized hepatocytes and a subcellular membrane fraction (microsomes) enriched in endoplasmic reticulum. W7 reduced the steady-state Ca2+ accumulation in both preparations in a dose-dependent fashion but the half-maximal inhibitory concentrations were different for Ca2+ accumulation (90 microM) and Ca2+-ATPase activity (500 microM). Kinetic analysis indicated that the inhibition of both Ca2+ uptake and Ca2+-ATPase activity by W7 was noncompetitive with respect to Ca2+ and ATP. Addition of W7 did not enhance the rate of Ca2+ efflux from microsomes after Ca2+ influx had been terminated. The effect of W7 was apparently not related to its calmodulin antagonist properties as the phenomenon could not be demonstrated with the other more specific calmodulin antagonists, calmidazolium or compound 48/80. A similar observation with W7 has also been reported with the endoplasmic reticulum of pancreatic islets (B. A. Wolf, J. R. Colca, and M. L. McDaniel (1986) Biochem. Biophys. Res. Commun. 141, 418-425). We concluded that the effects of W7 on microsomal Ca2+ handling were not the result of increased membrane permeability to Ca2+ but rather were due to dissociation of Ca2+ uptake from Ca2+-ATPase activity.  相似文献   

4.
Virus-induced human alpha interferon (HuIFN-alpha) derived from Namalwa cells and purified to a specific activity of 2 X 10(8) units/mg of protein was radiolabeled with 125I-labeled Bolton and Hunter reagent to a specific activity of 4-12 microCi/micrograms of protein. The binding of this 125I-IFN to bovine kidney cells was examined at 4 degrees C. Scatchard analysis of the binding data indicate the presence of 650 binding sites/cell and binding of the ligand with an apparent Kd of 6 X 10(-11) M. Trypsin or acid treatment of cells to which 125I-IFN was bound resulted in the release of greater than or equal to 77% of the radioactivity, indicating a majority of radiolabeled material was bound to the cell surface. Antibodies against human leukocyte IFN but not antibodies against human fibroblast IFN inhibited the binding of radiolabeled IFN to the cells. The binding of 125I-IFN was not inhibited by a 75-fold molar excess of mouse IFN but was inhibited 30% by a 200-fold molar excess of human beta (fibroblast) IFN. These data are compatible with the Lower biological activities of these IFNs on bovine kidney cells. Several Escherichia coli derived HuIFN-alpha s inhibited the binding of the radiolabeled IFN to the same extent as native HuIFN-alpha s, but four fragments of HuIFN-alpha 1, an E. coli-derived 86 amino acid NH2-terminal fragment as well as 3 different synthetic carboxy-terminal fragments of 140, 56, or 46 amino acids did not inhibit binding.  相似文献   

5.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ca2+, through the mediation of calmodulin, stimulates the activity of brain adenylate cyclase. The growing awareness that fluctuating Ca2+ concentrations play a major role in intracellular signalling prompted the present study, which aimed to investigate the implications for neurotransmitter (receptor) regulation of enzymatic activity of this calmodulin regulation. The role of Ca2+/calmodulin in regulating neurotransmitter-mediated inhibition and stimulation was assessed in a number of rat brain areas. Ca2+/calmodulin stimulated adenylate cyclase activity in EGTA-washed plasma preparations from each region studied--from 1.3-fold (in striatum) to 3.4-fold (in cerebral cortex). The fold-stimulation produced by Ca2+/calmodulin was decreased in the presence of GTP, forskolin, or Mn2+. In EGTA-washed membranes, receptor-mediated inhibition of adenylate cyclase was strictly dependent upon Ca2+/calmodulin stimulation in all regions, except striatum. A requirement for Mg2+ in combination with Ca2+/calmodulin to observe neurotransmitter-mediated inhibition was also observed. In contrast, receptor-mediated stimulation of activity was much greater in the absence of Ca2+/calmodulin. The findings demonstrate that ambient Ca2+ concentrations, in concert with endogenous calmodulin, may play a central role in dictating whether inhibition or stimulation of adenylate cyclase by neurotransmitters may proceed.  相似文献   

7.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

8.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

9.
The basic kinetic properties of the solubilized and purified Ca2+-translocating ATPase from human erythrocyte membranes were studied. A complex interaction between the major ligands (i.e., Ca2+, Mg2+, H+, calmodulin and ATP) and the enzyme was found. The apparent affinity of the enzyme for Ca2+ was inversely proportional to the concentration of free Mg2+ and H+, both in the presence or absence of calmodulin. In addition, the apparent affinity of the enzyme for Ca2+ was significantly increased by the presence of calmodulin at high concentrations of MgCl2 (5 mM), while it was hardly affected at low concentrations of MgCl2 (2 mM or less). In addition, the ATPase activity was inhibited by free Mg2+ in the millimolar concentration range. Evidence for a high degree of positive cooperativity for Ca2+ activation of the enzyme (Hill coefficient near to 4) was found in the presence of calmodulin in the slightly alkaline pH range. The degree of cooperativity induced by Ca2+ in the presence of calmodulin was decreased strongly as the pH decreased to acid values (Hill coefficient below 2). In the absence of calmodulin, the Hill coefficient was 2 or slightly below over the whole pH range tested. Two binding affinities of the enzyme for ATP were found. The apparent affinity of the enzyme for calmodulin was around 6 nM and independent of the Mg2+ concentration. The degree of stimulation of the ATPase activity by calmodulin was dependent on the concentrations of both Ca2+ and Mg2+ in the assay system.  相似文献   

10.
A high degree of ATP hydrolytic activity present in purified rat pancreatic acinar cells was localized to plasma membranes. This activity was stimulated almost equally by Mg2+ or Ca2+. Kinetic analysis revealed that the enzyme had a higher affinity for Ca2+ (Kd = 1.73 microM) than Mg2+ (Kd = 2.98 microM) but a similar maximal rate of activity. A comparison of substrate requirements revealed very similar profiles for the Mg2+- and Ca2+-stimulated activities. Combinations of saturating concentrations of Mg2+ or Ca2+ produced the same degree of maximal activity. Investigation of the partial reactions of the ATPase activity revealed two phosphoprotein intermediates (Mr = 115,000 and 130,000) in the presence of Ca2+ and Mg2+. A significant stimulation of the Ca2+-ATPase activity by calmodulin was observed (Kd = 0.7 microM). Calmodulin increased the Ca2+-sensitivity of this enzyme system; Mg2+ appeared to be required for this effect. The Ca2+-ATPase activity was also stimulated by acidic phospholipids. Using an 125I-labeled calmodulin gel overlay technique, calmodulin was shown to bind in a Ca2+-dependent fashion to 133,000- and 230,000-dalton proteins present in the plasma membrane-enriched fraction. Under conditions that favor Ca2+-dependent kinase activity, calmodulin enhanced the phosphorylation of a 30,000- and 19,000-dalton protein. The major ATP hydrolytic activity in pancreatic acinar plasma membranes was present as an ectoenzyme.  相似文献   

11.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

12.
Heart failure is common among the elderly and an alteration in myocardial Ca2+ transport is believed to be involved in its depressed contractile performance. Although ATP-dependent sarcoplasmic reticular (SR) Ca2+ transport has been reported to decrease in old hearts, virtually nothing appears to be known about the Ca2+ pump activity of SR in aging myocardium in the presence of calmodulin, one of its endogenous activators. In this study, the activity of the Ca2+ pump of aging cardiac SR was assessed in the presence of this endogenous stimulator. This assessment was therefore designed to give additional information about the status of this enzyme in old hearts. Male Sprague-Dawley rats were used and were divided into 3 groups: young (4-6 months old); middle-aged (15-17 months old) and old age (24-25 months old). Purified SR membranes were isolated from ventricular tissues. ATP-dependent Ca2+ accumulation by membrane vesicles of middle-aged and old hearts was significantly depressed in comparison to young hearts at all Ca2+ concentrations employed in the absence and presence of calmodulin. The activity of this Ca2+ transporter was similar in middle-aged and old hearts even in the presence of calmodulin. These results suggest that the activity of the Ca2+ pump in SR of aging hearts is depressed even in the presence of calmodulin.  相似文献   

13.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

14.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

15.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

16.
The activity of inositol-1,4,5-trisphosphate 3-kinase in the cytosol fraction of guinea pig macrophages was assayed with special reference to the dependence on the free Ca2+ concentration. The enzyme activity, as assessed by the production of inositol 1,3,4,5-tetrakisphosphate was reversibly activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6)M. The calmodulin antagonists, W-7 and chlorpromazine, inhibited the Ca2+-activated enzyme activity in a dose-dependent fashion, thereby indicating that calmodulin may be involved in the activation by Ca2+. The content of calmodulin in the cytosol fraction (about 2.8 micrograms/mg of cytosol protein) was markedly reduced to less than 0.03 microgram/mg of proteins by subfractionation by ammonium sulfate, followed by an anion-exchange chromatography. The subfraction obtained by the chromatography showed no Ca2+ dependence in the enzyme activity, while an exogenous addition of calmodulin with 10(-6)M Ca2+ increased the enzyme activity. The enzyme activity was retained on a calmodulin-affinity column in the presence of Ca2+, and was eluted from the column by lowering the free Ca2+ concentration by adding ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. These results clearly indicate that calmodulin activates the inositol-1,4,5-trisphosphate 3-kinase activity.  相似文献   

17.
We have studied the biological and receptor binding properties of a human alpha 2-interferon (HuIFN-alpha 2) analogue, [Ala30,32,33] HuIFN-alpha 2, which is shown in the accompanying paper (1) to be biologically inactive on homologous cells. Here we demonstrate that this analogue is also devoid of biological activity on bovine MDBK cells. However, whereas the analogue did not inhibit the binding of radiolabeled HuIFN-alpha 2 to WISH cells, it did compete for binding to receptors on the bovine cells. This behavior suggested that [Ala30,32,33] HuIFN-alpha 2 could act as an antagonist of HuIFN-alpha 2 on bovine cells and indeed coaddition of the analogue and native HuIFN-alpha 2 to MDBK cells competitively inhibited both the antiviral and antiproliferative activity of HuIFN-alpha 2.  相似文献   

18.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

19.
Inside-out vesicles of human erythrocytes took up Ca2+ against an electrochemical gradient. This Ca2+ uptake was dependent on ATP and was stimulated by calmodulin. Treatment of vesicles with 1 mM-EDTA exposed an apparent low-CA2+-affinity Ca2+-transport component with Kd of about 100 microM-Ca2+ or more. This was converted into a single high-Ca2+-affinity transport activity of Kd about 2.5 microM-Ca2+ in the presence of 2 micrograms of calmodulin/ml, showing that the decrease in transport activity after EDTA treatment was reversible. Vesicles not extracted with EDTA showed mainly apparent high-Ca2+-affinity kinetics even in the absence of added calmodulin. Trifluoperazine (30 microM) and calmodulin-binding protein (20 micrograms/ml) inhibited about 50% of the high-affinity Ca2+ uptake and (Ca2+ + Mg2+)-ATPase (Ca2+-activated, Mg2+-dependent ATPase) activity of these vesicles, indicating that the vesicles isolated by the procedure used retained some calmodulin from the erythrocytes. Comparison of Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities in inside-out vesicles yielded a variable Ca2+/P1 stoichiometric ratio. At low free Ca2+ concentrations (below 20 micro-Ca2+), a Ca2+/P1 ration of about 2 was found, whereas at higher Ca2+ concentrations the stoichiometry was approx. 1. The stoichiometry was not significantly altered by calmodulin.  相似文献   

20.
The Ca2+-transport system of human erythrocyte membranes was solubilized by deoxycholate in the presence of the nonionic detergent Tween 20 and was purified by calmodulin affinity chromatography. The method yields a functional enzyme, which as compared with the erythrocyte membrane was purified 207-fold based on specific activity, and about 330-fold based on protein content. The activity of the isolated enzyme can be increased about 9-fold by the addition of calmodulin, resulting in a specific activity of 10.1 mumoles/mg . min at 37 degrees C. Triton X-100 and deoxycholate stimulate the calmodulin-deficient Ca2+-ATPase in a concentration dependent manner, which results in a loss of the calmodulin-sensitivity. The Ca2+-transport ATPase could be reconstituted after solubilization of the ATPase by deoxycholate and controlled dialysis near room temperature. The system was reconstituted to form membraneous vesicles capable of energized Ca2+ accumulation. The membrane vesicles showed a protein to lipid ratio (approx. 60% protein and 40% lipid) similar to that of the original erythrocyte membrane. The stimulation by calmodulin of the calmodulin-depleted membrane-bound and partially purified Ca2+-ATPase is strongly time dependent. At a Ca2+-concentration of 40 microM and low calmodulin concentrations, approx. 120 min are required to regain full activity. This time period is decreased to about 15 min in the presence of a high excess of calmodulin. Vice versa, at fixed concentrations of calmodulin, the time necessary for regain of full activity is decreased as the Ca2+ concentrations is increased. The dependence of the Ca2+-ATPase activity on the calmodulin concentration shows strong deviation from Michaelis-Menten kinetics at Ca2+ concentrations below (4--10 microM) and above (200 microM) the optimum concentration of 40 microM. Mathematical analysis of the results at 200 microM Ca2+ leads to the assumption that 4 calmodulin molecules interact with one oligomer of Ca2+-ATPase consisting of 4 identical subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号