首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of highly purified liver microsomal cytochrome P-450 from phenobarbital-induced rabbits and cytochrome b5 has been investigated by the difference and second derivative difference spectroscopy. The addition of cytochrome b5 to cytochrome P-450 results in transition of cytochrome P-450 heme iron from low to high spin state. The interaction is accompanied by the changes in the second derivative spectrum of cytochrome P-450, which point to the participation of tryptophanyl residues in this process. The hydrophilic fragment of cytochrome b5 is unable to form a complex with cytochrome P-450 as judged by the absence of the difference spectrum and any changes in the second derivative UV-spectrum of cytochrome P-450. The evidence obtained indicates that the hydrophobic tail of the cytochrome b5 molecule responsible for its binding to membrane is also indispensable for forming a functional cytochrome P-450-cytochrome b5 complex.  相似文献   

2.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

3.
The interactions between purified rat hepatic microsomal cytochrome P-450 and the type I ligands benzphetamine and cytochrome b5 have been studied in the presence of phospholipid using difference spectrophotometry. Cytochrome b5 was shown to interact with cytochrome P-450 to form a tight 1:1 complex (Kd = 275 nM), in which the proportion of high spin cytochrome P-450 was increased from 7 to 30%. The presence of saturating cytochrome b5 was shown to cause a decrease in the apparent Kd for benzphetamine binding from 111 microM to 40 microM. Likewise, the presence of benzphetamine was shown to cause a decrease in the apparent dissociation constant for cytochrome b5 binding to cytochrome P-450 (Kd = 90 nM). The above interactions were resolved into the basic equilibria inter-relating the various ligation states of the hemoprotein in an energetically closed eight-state free energy coupling model and the relative magnitudes of the microequilibria were analyzed to determine the degree of coupling of the interactions between cytochrome P-450 and both benzphetamine and cytochrome b5. Consequently, the spin state changes in cytochrome P-450 induced by benzphetamine and cytochrome b5 binding were shown to arise because these ligands interact 7 and 4 times more tightly with high spin cytochrome P-450, respectively. Furthermore, the data revealed that these ligands interact at independent sites on cytochrome P-450. Thus the effects of cytochrome b5 upon benzphetamine binding and vice versa were rationalized simply in terms of an increase in the proportion of a high spin (high affinity) conformation of cytochrome P-450 brought about by pre-equilibration with the effector ligand, with the intrinsic binding affinities of the two ligands for the low or high spin states remaining relatively unaltered. The thermodynamic parameters associated with the interactions between cytochrome P-450 and cytochrome b5, determined from the temperature dependence of these interactions, revealed that these protein interactions are entropy driven and probably occur by a hydrophobic mechanism.  相似文献   

4.
Spin state transitions of membrane-bound cytochrome P-450 were investigated by difference spectrophotometry using the 'D'-charge transfer absorbance band at 645 nm as a measure of the amount of hemin iron present in the 5-coordinated state. The magnitude of the 'D'-absorbance band in the absence of exogenous substrates, e.g., the concentration of native high spin cytochrome P-450, was evaluated from the difference in absorbance at 645 nm between ferric cytochrome P-450 and the carbon monoxide derivative of the pigment in its ferrous state. The contribution of the native high spin species to the total cytochrome P-450 content of microsomes was calculated to be between 40% and 65% after induction with phenobarbital and polycyclic hydrocarbons, respectively. Up to 80% of the cytochrome P-450 was found to be present in the high spin state after the addition of exogenous substrates. Further, the steady state concentrations of high spin cytochrome P-450, observed in the presence of reduced pyridine nucleotides, suggest that the rate limiting step for microsomal mixed function oxidation reactions is variable and dependent on the substrate under investigation.  相似文献   

5.
In vitro studies on the nature of interaction of the neurotoxin MPTP with hepatic microsomal cytochrome P-450 were carried out. Spectral perturbation studies showed nitrogenous ligand type binding between MPTP and cytochrome P-450 with a peak at 423 nm and a broad trough at 400 nm. Scatchard analysis of MPTP-cytochrome P-450 binding suggested that MPTP binds to at least 2 species of cytochrome P-450--a high affinity binding species with an apparent spectral dissociation constant (Ks) of 372 microM and a low affinity species with Ks of 37.6 mM. EPR studies confirmed that MPTP is a type II substrate for the forms of cytochrome P-450 with which it interacts and causes a shift from the high spin state of cytochrome P-450 to the low spin state. MPTP is, thus, likely to be an effective inhibitor of cytochrome P-450.  相似文献   

6.
The binding of cholest-5-ene-3beta,20alpha-diol (20alpha-hydroxycholesterol), 11-deoxycorticosterone, and aminoglutethimide to cytochrome P-450 in bovine adrenal mitochondria was measured by changes in optical spectra at room temperature and by EPR spectra at 14 K. The two methods provided nearly identical quantitation of these interactions with cytochrome P-450. Two distinct high spin forms of cytochrome P-450 were revealed by EPR spectra. The predominant high spin species (g = 8.2) was decreased by addition of 20alpha-hydroxycholesterol and elevated pH but was increased by addition of cholesterol. The minor high spin species (g = 8.1) was incrreased by addition of deoxycorticosterone but decreased by low concentrations of metyrapone. The two forms were evidently not in equilibrium and have been assigned to distinct forms of cytochrome P-450 involved in, respectively, cholesterol side chain cleavage (P-450scc) and steroid 11beta hydroxylation (P-450(11)beta). The high spin states are derived from complexes of these P-450 cytochromes with endogenous substrates, which are, respectively, cholesterol and deoxycorticoids. A high to low spin transition was observed when these complexes were turned over by initiating hydroxylation with malate. The contributions of cytochromes P-450(11)beta and P-450scc to the low spin spectrum were also resolved by similar means. At least 20% of P-450scc is in the low spin state while about 90% of P-450(11)beta is low spin in isolated beef adrenal mitochondria. Low spin complexes of cytochrome P-450scc with 20alpha-hydroxycholesterol and 3beta-hydroxypregn-5-ene-20-one (pregnenolone) gave distinct EPR spectra. Aminoglutethimide interacted with the total cytochrome P-450 content of the bovine adrenal mitochondria forming low spin complexes. Both optical and EPR data indicated binding to two forms of cytochrome P-450. These results suggest a detailed correlation between the spin state and absorbance changes seen at room temperature, illustrate that EPR allows the distinction of two principal forms of P-450, and suggest that there is no appreciable change in the spin state of either cytochrome between 14 K and 300 K.  相似文献   

7.
Hepatic microsomal azoreductase activity in mice was induced with phenobarbital (PB) and 3-methylcholanthrene (3-MC). Antibodies against cytochrome P-450 inhibited azoreductase activity of PB-treated animals while antibodies against cytochrome P-448 inhibited liver azoreductase activity of 3-MC-treated animals, each by about 90%. These antibodies also inhibited microsomal 7-ethoxycoumarin-O-deethylase activity to the same extent. It is concluded that hepatic microsomal azoreductase activity is almost totally dependent on cytochromes P-450 and P-448 and the contribution, if any, of other microsomal components is negligible.  相似文献   

8.
An effective method, based on the chromatography on ω-aminooctyl Sepharose 4B, for the purification of the alkane-induced cytochrome P-450 is described. The purified cytochrome P-450 was homogeneous in SDS/polyacrylamide gel electrophoresis. In the oxidized state it showed a low spin type absorption spectrum. The reduced CO-complex is characterized by a Soret peak at 447 nm. The alkane hydroxylating enzyme system could be reconstituted combining purified cytochrome P-450 with partially purified NADPH-cytochrome P-450 reductase from the yeast microsomal fraction.  相似文献   

9.
Microsomal cytochrome P-450 from tulip bulbs (Tulipa gesneriana L., Balalaika) was purified to an almost electrophoretically homogeneous preparation. The specific content of cytochrome P-450 in the final preparation was 6.68 nmol/mg protein, which was 30-fold enriched from that of the solubilized fractions of microsomes. The molecular weight of purified cytochrome P-450 by SDS-gel electrophoresis is 52,500. The Oxidized form of the purified cytochrome P-450 had absorption peaks at 392, 552, and 645 nm and the absolute reduced CO spectrum peaked at 448 nm. Judged spectrally, the purified cytochrome P-450 is in high spin in the oxidized state. Antiserum against this cytochrome P-450 previously has shown to be highly specific for its antigen but showed a single precipitin line with solubilized microsomal proteins from tulip bulbs of several other cultivars. The physiological role of this cytochrome P-450, however, is unknown in these dormant tulip bulbs.  相似文献   

10.
The effect of substrate on the spin state of oxidized cytochrome P-450 in liver microsomes prepared from phenobarbital-pretreated rats has been examined. Formation of the substrate-induced Type I difference spectrum was found to correlate quantitatively with the disappearance of the ferric low-spin esr signal of cytochrome P-450. The dissociation constant of substrate for oxidized cytochrome P-450 obtained by optical methods was found to be the same as that obtained from esr methods provided that the same high microsomal protein concentration was used. However, a decrease in microsomal protein concentration leads to an apparent increase in the affinity of substrate for oxidized cytochrome P-450, indicating a dependence of lipophilic substrate dissociation constants on the membrane concentration.  相似文献   

11.
Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.  相似文献   

12.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

13.
Hydrocarbons of different structures interact with microsomal and solubilized cytochrome P-450 from liver of phenobarbital-pretreated rats forming a high spin enzyme-substrate type complex. The affinity of cytochrome P-450 for hydrocarbons increases with increasing lipophilicity independently of the chemical structure. The binding capacity of microsomal P-450 for aliphatic hydrocarbons is generally higher than for aromates. Mutual influence in binding of two different hydrocarbons by microsomal P-450 is stronger among aromatic than among aliphatic hydrocarbons; in both cases it appears to be effected rather by specific interaction of both substances with the binding site than by a nonspecific influence on the microsomal membrane. Only one fraction of low spin form of solubilized cytochrome P-450 from rat liver interacts with hydrocarbons. The binding capacity for aromatic and aliphatic substances corresponds to that found in microsomes. The affinity for the most lipiphilic substrate, perhydrophenanthrene, is equal in microsomal and solubilized preparation; with decreasing lipophilicity the affinity of solubilized P-450 decreases faster than in microsomes. The LM2 fraction of cytochrome P-450 from phenobarbital-pretreated rabbits interacts only with aliphatic hydrocarbons with wide variation of the binding capacity. The affinity is generally one order of magnitude lower than in microsomes. Active fractions of solubilized P-450 from both species are rapidly converted to P-420 by dithionite. The extent of this conversion is strongly reduced by saturation with substrate.  相似文献   

14.
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.  相似文献   

15.
A carbon monoxide-binding pigment which shows an absorption peak at about 450 nm in the reduced carbon monoxide difference spectrum was purified from the microsomal fraction of yeast grown anaerobically. The spectral characteristics of the pigment were practically identical with those of cytochrome P-450 of hepatic microsomes, especially from polycyclic hydrocarbon-induced animals. The pigment was denatured to P-420, and bound with ethyl isocyanide in the reduced state. Although Type I spectral change was not evident, the pigment showed Type II and modified Type II spectral changes upon binding with some organic compounds, as in the case of hepatic cytochrome P-450. These observations clearly indicate that the carbon monoxide-binding pigment of yeast microsomes may be designated as cytochrome P-450 of yeast.  相似文献   

16.
The effect of spironolactone administration on the content of adrenal microsomal cytochrome P-450 and on the activity of adrenal 17α-hydroxylase was examined in male cortisol and corticosterone-producing animals. Decreases in the content of microsomal cytochrome P-450 and in the activity of the 17α-hydroxylase after spironolactone treatment occur only in those animals which predominantly produce cortisol rather than corticosterone and which have a high activity of adrenal steroid 17α-hydroxylase. The administration of spironolactone to cortisol-producing animals, namely the guinea pig and the dog, caused a 50 to 80% loss of microsomal cytochrome P-450 with a concomitant decrease in the activity of the microsomal 17α-hydroxylase. In contrast to its effect in cortisol-producing animals, the administration of spironolactone caused either an increase or slight alteration in the concentration of adrenal microsomal cytochrome P-450 in corticosterone-producing animals such as the rat and the rabbit.  相似文献   

17.
Polyclonal antibodies were produced in rabbits against purified cytochrome P-450j isolated from isoniazid-treated adult male rats. The monospecificity of immunoadsorbed antibody to cytochrome P-450j was demonstrated by Ouchterlony double diffusion analyses, enzyme-linked immunosorbent assays, and immunoblots. Immunoquantitation results indicated that rat liver microsomal cytochrome P-450j content decreases between 3 and 6 weeks of age in both the male and female animal. Several xenobiotics, such as Aroclor 1254, mirex, and 3-methylcholanthrene, repressed cytochrome P-450j levels when administered to male rats. Isoniazid, dimethyl sulfoxide, pyrazole, 4-methylpyrazole, and ethanol were inducers of cytochrome P-450j in rat liver although these compounds showed different inducing potencies. Microsomes from adult male rats with chemically induced diabetes also contained elevated levels of cytochrome P-450j compared to untreated animals. Cytochrome P-450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries, and testes; however, extrahepatic cytochrome P-450j was inducible by isoniazid. Approximately 80-90% of microsomal N-nitrosodimethylamine demethylation was inhibited by antibody to cytochrome P-450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of cytochrome P-450j. The residual catalytic activity resistant to antibody inhibition may be a reflection of the inaccessibility of a certain amount of cytochrome P-450j due to interference by NADPH-cytochrome P-450 reductase based on results obtained with the reconstituted system. There was a good correlation (r2 = 0.87) between cytochrome P-450j content and N-nitrosodimethylamine demethylase activity in microsomes from rats of different ages and treated with various xenobiotics. The evidence presented indicates that cytochrome P-450j is the primary, and perhaps sole, microsomal catalyst of N-nitrosodimethylamine demethylation at substrate concentrations relevant to hepatocarcinogenesis induced by N-nitrosodimethylamine.  相似文献   

18.
Monoclonal antibodies against a high spin form of rat cytochrome P-448   总被引:4,自引:0,他引:4  
Ten monoclonal antibodies reactive with a high spin form of rat cytochrome P-448 (P-448-H) were obtained from hybridoma clones established by a fusion between P3X63Ag8.653 mouse myeloma cells and spleen cells of a BALB/c mouse hyperimmunized with the cytochrome. One monoclonal antibody recognized an epitope characteristic for P-448-H. Five monoclonal antibodies were cross-reactive with a low spin form of rat cytochrome P-448, but not with cytochrome P-450. Reactivity of these monoclonal antibodies with microsomes of rats pretreated with drug metabolizing inducers and Western blots of the microsomal cytochrome P-450 components are also demonstrated.  相似文献   

19.
The membrane microsomal monooxygenase system can be reconstituted in solution from NADPH-specific flavoprotein and cytochrome P-450 which exist in the monomeric state in the presence of Emulgen 913 at molar ratio of the proteins and detergent of 1:1:300. Oxidized and dithionite-reduced monomers of cytochrome P-450 were much less thermostable than its initial aggregates, while thermal stability of NADPH-specific flavoprotein did not depend on its aggregation state. Binding spectra of cytochrome P-450 monomers with benzphetamine were atypical and had an absorbance minimum at 422 nm only. The addition of benzphetamine and/or flavoprotein to cytochrome P-450 monomers did not cause the spin equilibrium shift and the low-spin form content was higher than 85% in all cases. Investigation of the dependence of the initial rates of NADPH-dependent cytochrome P-450 reduction and benzphetamine oxidation on the stoichiometry of the flavoprotein and cytochrome P-450 at their constant total concentration showed that the molar ratio of 1:1 was required for maximal activity. Thus this system works in full accordance with the mass action law.  相似文献   

20.
A form of cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation (tentatively called "P-450(14)DM") was purified from microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae to gel electrophoretic homogeneity. An apparent monomeric Mr = 58,000 was estimated for the purified cytochrome by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both optical and EPR spectra of oxidized P-450(14)DM are characteristic of low spin ferric heme proteins, and its reduced CO complex showed a Soret absorption peak at 447 nm. As in the case of hepatic microsomal cytochromes P-450, the ethyl isocyanide complex of reduced P-450(14)DM was in a pH-dependent equilibrium between two states having Soret peaks at 429 and 453 nm, the equilibrium being considerably shifted toward the 453-nm state. Oxidized P-450(14)DM was peculiar in that in its CD spectrum there was a negative shoulder at 425 nm and the 350- and 414-nm troughs possessed larger and relatively smaller [theta] values, respectively, than those reported for other low spin ferric cytochromes P-450. Lanosterol was the only compound which caused a Type I spectral change in oxidized P-450(14)DM. The lanosterol-induced low to high spin state change was, however, only slight even at saturating concentrations of the sterol, indicating that the lanosterol-P-450(14)DM adduct was in a spin state equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号