首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiostereometric analysis (RSA) is a highly accurate technique used to provide three-dimensional (3D) measurements of orthopaedic implant migration for clinical research applications, yet its implementation in routine clinical examinations has been limited. Previous studies have introduced a modified RSA procedure that separates the calibration examinations from the patient examinations, allowing routine clinical radiographs to be analyzed using RSA. However, in order to calibrate the wide range of clinical views, a new calibration object is required. In this study, a universal, isotropic calibration object was designed to calibrate any pair of radiographic views used in the clinic for RSA. A numerical simulation technique was used to design the calibration object, followed by a phantom validation test of a prototype to verify the performance of the novel object, and to compare the measurement reliability to the conventional calibration cage. The 3D bias for the modified calibration method using the new calibration object was 0.032 ± 0.006 mm, the 3D repeatability standard deviation was 0.015 mm, and the 3D repeatability limit was 0.042 mm. Although statistical differences were present between the universal calibration object and the conventional cage, the differences were considered to be not clinically meaningful. The 3D bias and repeatability values obtained using the universal calibration object were well under the threshold acceptable for RSA, therefore it was successfully validated. The universal calibration object will help further the adoption of RSA into a more routine practice, providing the opportunity to generate quantitative databases on joint replacement performance.  相似文献   

2.
This study describes a novel calibration method for six-degrees-of-freedom force/torque sensors (FTsensors) using a pre-calibrated force plate (FP) as a reference measuring device. In this calibration method, the FTsensor is rigidly connected to a FP and force/torque data are synchronously recorded while a dynamic functional loading procedure is applied by the researcher. Based on these data an accurate calibration matrix for the FTsensor can easily be obtained via least-squares optimization. Using this calibration method, this study further investigated what loading methods are appropriate for the calibration of FTsensors intended for ambulatory measurement of ground reaction forces (GRFs). Seven different loading methods were compared (e.g., walking, pushing while standing on the FTsensor). Calibration matrices were calculated based on the raw data from the seven loading methods individually and all loading methods combined. Performance of these calibration matrices was subsequently compared in an in situ trial. During the in situ trial, five common work tasks (e.g., walking, manual lifting, pushing) were performed by an experimenter, while standing on the FP wearing a "ForceShoe" with two calibrated FTsensors attached to its sole. Root-mean-square differences (RMSDs) between the FTsensor and FP outcomes were calculated over all tasks. Using the calibration matrices based on all loading methods combined resulted in small RMSDs (GRF: <8 N, center of pressure: <2 mm). Using the calibration matrices based on "pushing against manual resistance" resulted in similar RMSDs, proving it to be the best single loading method.  相似文献   

3.
Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.  相似文献   

4.
In the present study, a new online monitoring method for the determination of the CO? sensitivity of micro-organisms, based on the values of the respiration factors [OTR (oxygen transfer rate) and CTR (carbon dioxide transfer rate)], obtained by using the RAMOS (respiratory activity monitoring system) device considering a variety of aeration rates in the measuring flask, is investigated. Based on the data of the OTR, obtained by RAMOS under a variety of specific aeration rates, the proposed new method was developed as an online monitoring method for CO? sensitivity of micro-organisms in shaken bioreactors. A maximum accumulated CO? concentration of 12% was derived in applied methods, provided that the cultivation system is carried out under optimal conditions. Additionally, to predict these conditions, an unsteady-state gas transfer model in shaken bioreactors would be very advantageous. The data of OTR obtained using the RAMOS device were analysed and recalculated by a programme considering the calibration factor (Cf). The major advantage of the new method is the possibility to determine the metabolic activity, regardless of manual sampling.  相似文献   

5.
The aim of this study was to establish the optimal methodology for skin-fixed measurement of the scapula during dynamic movement. This was achieved by comparing an optimally positioned Scapula Tracker device (ST) to a previously described palpation device, taken as the true measure of scapular kinematics. These measurements were compared across a range of calibration positions, including the use of multiple calibration positions for a single movement, in order to establish an optimal calibration approach. Ten subjects' scapular motion was measured using this ST and a previously described Acromial Method (AM). The two datasets were compared at a standard, an optimal and a 'multiple' calibration position, thus allowing a direct comparison between two common skin-fixed methods to track the bony kinematics of the scapula across different calibration positions. A comparison was also made with a bone-fixed technique from the literature. At both the standard and optimal calibration positions the ST was shown to be the more accurate measure of internal rotation and posterior tilt, particularly above 100° of humerothoracic elevation. The ST errors were found to be acceptable in relation to clinically important levels. Calibration positions have been shown to have a significant effect on the errors of both skin-fixed measurement techniques and therefore the importance of correct calibration is highlighted. It has thus been shown that a ST can be used to accurately quantify scapular motion when appropriately calibrated for the range of motion being measured.  相似文献   

6.
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).  相似文献   

7.
For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.  相似文献   

8.
The purpose of this study was to establish a calibration model to predict the hydrate content in powder materials consisting of anhydrate (theophylline anhydrate (THA)) and theophylline monohydrate (THM) by using various kinds of X-ray powder diffraction (XRPD) analytical methods. XRPD profiles were measured five times each for 11 standard samples containing of THA and THM. THM content in the standard samples was evaluated based on XRPD profiles by the diffraction peak height and area methods, and the Wakelin’s and principal component regression (PCR) methods, respectively. Since THA and THM were cube- and rod-shaped particles, the standard samples consisted of THA and THM showed crystal orientation due to THM crystal shape. THA showed reproducible XRPD profiles, but THM showed fluctuating intensities in some specific peaks in the profiles. The linear calibration models were evaluated based on calibration XRPD datasets of the standard materials by various methods. In the result based on validation XRPD datasets, the order of the mean bias and the mean accuracy were peak height > peak area > Wakelin’s > PCR, indicating that PCR was the best method to correct sample crystal orientation. The effectiveness of the PCR method in construction of calibration models was discussed by a scientific approach based on regression vectors.  相似文献   

9.
A fluorene-based π-conjugated copolymer with on-chain dibenzoborole units was used in the development of a nanocoated gold interdigitated microelectrode array device which successfully detects fluoride in a broad range of concentrations (10(-11)-10(-4) M) in aqueous solution, upon impedance spectroscopy measurements. A calibration curve obtained over this range of concentrations and a new analytical method based on impedance spectroscopy measurements in aqueous solution is proposed. The sensor nanofilm was produced by spin-coating and diagnosed via spectroscopic ellipsometry, AFM, and electrically conductivity techniques. Changes in the conductivity due to the boron-fluoride complex formation seem to be the major mechanism behind the dependence of impedimetric results on the fluoride concentration.  相似文献   

10.
Gelatin samples obtained by chemical modification (succinylation) are studied by SEC on silica based chromatographic supports. The influence of the pH of eluent mixtures (potassium phosphate added to NaCl) in the range 7-3.3 shows that the void volume peak (VVP) is lowered or even vanishes at pH 3.3 with the 3000 SW (TSK) gel. A process using an ultrasound treatment before injection is reported in order to determine accurately the molecular parameters of gelatin onto TSK gel with a minimal VV P. This peak is attributed to molecular aggregation of a part of the modified gelatin. After disaggregation by ultrasound or heat treatment the results are in good accordance with those obtained by other methods. It is demonstrated that with proteins and dextrans the TSK 3000 SW gel does not agree with the universal calibration curve (log[ν] · versus Kd as reported previously. A single calibration curve is obtained when the Stokes radius is plotted versus Kd. Gelatin fractions are eluted at pH 7 close to this calibration curve. This plot shows that gelatin fractions at pH 3.3 are not eluted by a pure size exclusion mechanism on 3000 SW gel. It is concluded that hydrophobic interactions between fractions of gelatin and the gel explain the high retention of these samples.  相似文献   

11.
Measurements of the three-dimensional shape of the rib cage   总被引:5,自引:0,他引:5  
  相似文献   

12.
A novel method for simultaneous determination of cortisol and prednisolone in body fluids has been developed in this paper. Three-way data recorded by high-performance liquid chromatography with a diode array detector (HPLC-DAD) have been analyzed by second-order calibration based on the alternating trilinear decomposition (ATLD) algorithm. The chemometric methodology selected exploits the second-order advantage of the three-way data arrays, which allows one to obtain concentrations of individual calibrated analytes even in the presence of interferences not present in the calibration samples (e.g. background in urine or plasma). It was applied to simultaneous determination of cortisol and prednisolone in both plasma and urine samples. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of the analytes could be obtained with HPLC-DAD coupled with second-order calibration based on ATLD. Sample preparation was based on solvent extraction (SE), and quantification can be carried out with simple mobile phase. The time required for the quantification process is shorter than other methods.  相似文献   

13.
This paper presents a mathematical model for the propagation of errors in body segment kinematics to the location of the center of rotation. Three functional calibration techniques, usually employed for the gleno-humeral joint, are studied: the methods based on the pivot of the instantaneous helical axis (PIHA) or the finite helical axis (PFHA), and the “symmetrical center of rotation estimation” (SCoRE). A procedure for correcting the effect of soft tissue artifacts is also proposed, based on the equations of those techniques and a model of the artifact, like the one that can be obtained by double calibration. An experiment with a mechanical analog was performed to validate the procedure and compare the performance of each technique. The raw error (between 57 and 68 mm) was reduced by a proportion of between 1:6 and less than 1:15, depending on the artifact model and the mathematical method. The best corrections were obtained by the SCoRE method. Some recommendations about the experimental setup for functional calibration techniques and the choice of a mathematical method are derived from theoretical considerations about the formulas and the results of the experiment.  相似文献   

14.
J J Tiede  M Pagano 《Biometrics》1979,35(3):567-574
The minute concentrations of many biochemically and clinically important substances are currently estimated by radioimmunoassay (RIA). Traditionally, the most popular approaches to the statistical analysis of RIA data have been to linearize the data through transformation and fit the calibration curve using least squares or to directly fit a nonlinear calibration curve using least squares. Estimates of the hormone concentration in patients are then obtained using this curve. Unfortunately, the transformation is frequently unsuccessful in linearizing the data. Furthermore, the least squares fit can lead to erroneous results in both approaches since the many sources of error which exist in the RIA process often result in outlier observations. In this paper, an approach to the analysis of RIA data which incorporates robust estimation methods is described. An algorithm is presented for obtaining the M-estimates of nonlinear calibration curves. The curves to be fitted are modified hyperbolae based on 12 to 16 observations. A procedure, based on the application of the Bonferroni Inequality, is presented for obtaining tolerance-like interval estimates of the concentration of the hormone of interest in the patients. Results of simulations are cited to support the method of construction of confidence bands for the fitted calibration curve. Data obtained from the Veteran's Hospital, Buffalo, New York are used to illustrate the application of the algorithm which is presented.  相似文献   

15.
16.
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.  相似文献   

17.
Identifying tumor cells from a pool of other cells has always been an appealing topic for different purposes. The objective of this study is to discriminate circulating tumor cells (CTCs) from blood cells for diagnostic purposes in a novel microfluidic device using two active methods: magnetophoresis and dielectrophoresis. The most specific feature of this device is the differentiation of CTCs without labeling them in order to achieve a more reliable and less complicated method. This device was analyzed and evaluated using finite element method. Four cell lines are separated in this device containing red blood cells, platelets, white blood cells, and CTCs. Primarily, red blood cells and platelets, which constitute the largest part of a blood sample, are removed in the magnetophoresis section. Remaining cells enter the dielectrophoresis part and based on their inherent dielectric properties and diameters, final separation occurs. In each step, different parameters are examined to obtain the maximum purification. The results demonstrate the potential of different CTCs separation by changing the effective parameters in the designed device based on the inherent properties of the cells.  相似文献   

18.
In order to verify the reproducibility, precision, and robustness of the optical immunosensor River Analyser (RIANA), we investigated two common statistical methods to evaluate the limit of detection (LOD) and the limit of quantification (LOQ). Therefore, we performed a simultaneous multi-analyte calibration with atrazine, bisphenol A, and estrone in Milli-Q water. Using an automated biosensor, it was possible for the first time to achieve a LOD below 0.020 microg L(-1) using a common statistically based method without sample pre-treatment and pre-concentration for each of the analytes in a simultaneous multi-analyte calibration. This biosensor setup shows values comparable to those obtained by more classical analytical methods. Based on this calibration, we measured spiked and un-spiked real water samples with complex matrices (samples from different water bodies, from ground water sources, and tap water samples). The comparison between our River Analyser and common analytical methods (like GC-MS and HPLC-DAD) shows overall comparable values for all three analytes. Furthermore, a calibration of isoproturon (IPU) (in single analyte mode) resulted in a LOD of 0.016 microg L(-1), and a LOQ of 0.091 microg L(-1). In compliance with guidelines of the Association of Analytical Communities International (AOAC), six out of nine recovery rates (recovery rate: measured concentration divided by real concentration in percent) for three surface water samples with different matrices (spiked and un-spiked) could be obtained between 70 and 120% (recovery rates between 70 and 120%, as demanded by the guidelines of the AOAC International). The reproducibility was checked by measuring replica of each sample within independent repetitions. Robustness could be demonstrated by long-term stability tests of the biosensor surface. These studies show that the biosensor used offers the necessary reproducibility, precision, and robustness required for an analytical method.  相似文献   

19.
Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP) measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy.  相似文献   

20.
A simple, low-cost, home-built acrylamide gel scanning densitometer is described. The instrument was designed to provide gel scans for the purpose of comparing the relative rates of mobility of bands. It does not include provisions for large volume, integration of peaks, or micrometer resolution. The key to the simplicity of the device was through the use of a rotary rather than a transverse gel carriage. A turntable was attached directly to the shaft of a synchronous clock motor with a slow rate of rotation. A curved gel holder, placed on the turntable, carries the gel through the light beam. A commercial strip chart recorder is used with the scanner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号