首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of internal motion on the quality of a protein structure derived from nuclear magnetic resonance (NMR) cross relaxation has been investigated experimentally. Internal rotation of the tyrosine-31 ring of turkey ovomucoid third domain was found to mediate magnetization transfer; the effect led to underestimation of proton-proton distances in its immediate neighborhood. Experimental methods that distinguish pure cross relaxation from chemical exchange mediated cross relaxation were used to separate true distances from distorted ones. Uncorrected and corrected sets of distances, where the corrections took internal motion into account, each were used as input to a distance geometry program for structural modeling. Each set of distances yielded a family of similar (converged) structures. The two families of structures differed considerably (2 A) in the region of tyrosine-31. In addition, differences as large as 1 A were observed at other positions throughout the structure. These results emphasize the importance of analyzing the effects of internal motions in order to obtain more accurate NMR solution structures.  相似文献   

2.
The conformational and dynamical features of a branched mannan isolated from a fungal cell wall have been analysed by homo and heteronuclear NMR methods, employing different magnetic fields. 1HNMR cross relaxation times have been obtained for this polysaccharide and have been interpreted qualitatively using different motional models. 13C NMR relaxation parameters (T1, T2, NOE) have also been measured and interpreted using different approximations based on the Lipari and Szabo model free approach. The analysis of the data indicate the existence of important flexibility for the different linkages of the polysaccharide. Motions in the range of 4–6 ns contribute to the relaxation of the macromolecule, although faster internal motions in the 500 ps and 100 ps timescales are also present. These time scales indicate that segmental motions as well as internal motions around the glycosidic linkages are the major sources of relaxation for this molecule at 318 K. Molecular dynamics simulations have also been performed. The obtained results also indicate that the polysaccharide possess a substantial amount of conformational freedom.  相似文献   

3.
D Genest 《Biopolymers》1989,28(11):1903-1911
Monte Carlo methods have been used to simulate internal motions of aromatic protons of an oligonucleotide at the nanosecond time scale. Each proton is allowed to fluctuate about its equilibrium position. The longitudinal cross-relaxation rates of such a system of spins have been determined by computing the appropriate correlation functions. Then the interproton distances have been deduced according to the procedure generally used in two-dimensional nmr techniques (nuclear Overhauser effect spectroscopy--NOESY) and compared to the true values. The influence of the amplitude A and of the internal rotational diffusion constant Dint characterizing the dynamics of the system has been checked for in-phase and for uncorrelated motions. It is shown that for the investigated models the distances deduced from NOESY experiments may be under- or overestimated, depending strongly on the values of A and Dint. Furthermore, the cross-relaxation rate of a couple of protons is very sensitive to the correlation level of the motions of both protons.  相似文献   

4.
Dynamic averaging effects from internal motions on interproton distances estimated from nuclear Overhauser effects (NOE) are determined by using a molecular dynamics simulation of lysozyme. Generalized order parameters measuring angular averaging and radial averaging parameters are calculated. The product of these two parameters describes the full averaging effects on cross-relaxation. Analysis of 2778 non-methyl NOE interactions from the protein interior and surface indicates that distances estimated by assuming a rigid molecule have less than 10% error for 89% of the NOE interactions. However, analysis of 1854 methyl interactions found that only 68% of the distances estimated from cross-relaxation rates would have less than 10% error. Qualitative evaluation of distances according to strong, medium and weak NOE intensities, when used to define only the upper bound for interproton separation, would misassign less than 1% of the distance constraints because of motional averaging. Internal motions do not obscure the identification of secondary structure, although some instances of significant averaging effects were found for interactions in alpha-helical regions. Interresidue NOEs for amino acids more than three residues apart in the primary sequence are more extensively averaged than intraresidue or short-range interresidue NOEs. Intraresidue interactions exhibit a greater degree of angular averaging than those involving interresidue proton pairs. An internal motion does not equally affect all NOE interactions for a particular proton. Thus, incorporation of averaging parameters in nuclear magnetic resonance structure determination procedures must be made on a proton-pair-wise basis. On the basis of the motional averaging results, particular fixed-distance proton pairs in proteins are suggested for use as distance references. A small percentage of NOE pairs localized to three regions of the protein exhibit extreme averaging effects from internal motions. The regions and types of motions involved are described.  相似文献   

5.
Abstract

Temperature dependencies of 1H non-selective NMR T1 and T2 relaxation times measured at two resonance frequencies and natural abundance l3C NMR relaxation times Tl and Tlr measured at room temperature have been studied in a set of dry and wet solid proteins—;Bacterial RNase, lysozyme and Bovine serum albumin (BSA). The proton and carbon data were interpreted in terms of a model supposing three kinds of internal motions in a protein. These are rotation of the methyl protons around the axis of symmetry of the methyl group, and fast and slow oscillations of all atoms. The correlation times of these motions in solid state are found around 10?11, 10?9 and 10?6 s, respectively. All kinds of motion are characterized by the inhomogeneous distribution of the correlation times. The protein dehydration affects only the slow internal motion. The amplitude of the slow motion obtained from the carbon data is substantially less than that obtained from the proton data. This difference can be explained by taking into account different relative inter- and intra- chemical group contributions to the proton and carbon second moments. The comparison of the solid state and solution proton relaxation data showed that the internal protein dynamics in these states is different: the slow motion seems to be few orders of magnitude faster in solution.  相似文献   

6.
The backbone dynamics of uniformly 13C/15N-enriched ribonuclease T1 have beeninvestigated using carbonyl carbon relaxation times recorded at three different spectrometerfrequencies. Pulse sequences for the determination of the longitudinal (T1) and transverse (T2)relaxation times are presented. The relaxation behaviour was analysed in terms of a multispinsystem. Although the chemical shift anisotropy relaxation mechanism dominates at highmagnetic field strength, the contributions of the dipole–dipole interactions and thecross-correlation between these two relaxation mechanisms have also been considered.Information about internal motions has been extracted from the relaxation data using themodel-free approach of Lipari and Szabo in order to determine order parameters (S2) andeffective internal correlation times (i). Using a relatively simple relation between themeasured relaxation rates and the spectral density function, an analytical expression for themicrodynamical parameters in dependence of T1 and T2 has been derived. The spectraldensity mapping technique has been applied in order to study the behaviour of the carbonylcarbon resonances in more detail.  相似文献   

7.
A polarized photobleaching study of DNA reorientation in agarose gels   总被引:3,自引:0,他引:3  
Polarized fluorescence recovery after photobleaching (pFRAP) has been used to study the internal dynamics of relatively long DNA molecules embedded in gels that range in concentration from 1% to 5% agarose. The data indicate that, even in very congested gels, rapid internal relaxation of DNA is largely unhindered; however, interactions with gel matrices apparently do perturb the larger amplitude, more slowly (microseconds to milliseconds) relaxing internal motions of large DNAs. The relationship between this work and recent studies which indicate that internal motions of DNA play an important role in the separation achieved with pulsed-field gel electrophoresis techniques is discussed. The polarized photobleaching technique is also analyzed in some detail. In particular, it is shown that "reversible" photobleaching phenomena are probably related to depletion of the ground state by intersystem crossing to the triplet state.  相似文献   

8.
Carbon spin-lattice relaxation rates of an anti-inflammatory drug, piroxicam, have been measured. These results have been used in determining the reorientational rates of the proton carbon vectors. An analysis of internal motions within the pyridinyl moiety of piroxicam was carried out. Selective proton-carbon nuclear Overhauser effect (NOE) measurements were made in order to determine the solution structure of piroxicam. The effect of indirect NOE arising from exchangeable protons has been analyzed and considered.  相似文献   

9.
Over the past decade molecular mechanics and molecular dynamics studies have demonstrated considerable flexibility for carbohydrates. In order to interpret the corresponding NMR parameters, which correspond to a time-averaged or 'virtual' conformer, it is necessary to simulate the experimental data using the averaged geometrical representation obtained with molecular modelling methods. This structural information can be transformed into theoretical NMR data using empirical Karplus-type equations for the scalar coupling constants and the appropriate formalism for the relaxation parameters. In the case of relaxation data, the 'model-free' spectral densities have been widely used in order to account for the internal motions in sugars. Several studies have been conducted with truncated model-free spectral densities based on the assumption that internal motion is very fast with respect to overall tumbling. In this report we present experimental and theoretical evidence that suggests that this approach is not justified. Indeed, recent results show that even in the case of moderate-sized carbohydrates internal motions are occurring on the same timescale as molecular reorientation. Simulations of relaxation parameters (NOESY volumes, proton cross-relaxation rates, carbon T1 and nOe values) in the dispersion range (0.1<Tc<5 ns) show that rates of internal motion can be fairly precisely defined with respect to overall tumbling. Experimental data for a variety of oligosaccharides clearly indicate similar timescales for internal and overall motion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The frequency dependence of the proton spin lattice relaxation time of bovine serum albumin, muscle tissue, Micrococcus luteus and yeast has been measured by the aid of the field-cycling technique. In all systems 14N1H-quadrupole dips have been observed. The conclusion is that amide groups are the dominating relaxation centers up to approx. 10(7) Hz. This finding can be understood by the fact that protein backbone fluctuations and, if possible, tumbling of the whole molecule rather than side group motions are the relevant mechanisms in this frequency range. A proton relaxation scheme for cells and tissue is presented.  相似文献   

11.
The solution structure of the hairpin formed by d(CGCGTTGTTCGCG) has been examined in detail by a wide variety of NMR techniques. The hairpin was characterized by proton NMR to obtain interproton distances and torsion angle information. An energy-minimized model was constructed that is consistent with these data. The hairpin consists of a B-DNA stem of four C-G base pairs and a loop region consisting of five unpaired bases. Three bases in the 5' of the loop are stacked over the 3' end of the stem, and the other two bases in the 3' of the loop are stacked over the 5' end of the stem. The phosphorus NMR spectrum revealed a phosphate in the stem region with an unusual conformation, and two phosphates, P9 and P10, were found to undergo intermediate exchange between conformations. The hairpin was also synthesized with a carbon-13 label in each of the thymidine C6 carbons, and relaxation measurements were performed to determine the extent of internal motions in the loop region. The loop bases are more flexible than the stem bases and exhibit subnanosecond motions with an amplitude corresponding to diffusion in a cone of approximately 30 degrees.  相似文献   

12.
The binding of gadolinium to a synthetic peptide of 13 amino acid residues representing the calcium binding loop of site 3 of rabbit skeletal troponin C [AcSTnC(103-115)amide] has been studied by using proton nuclear magnetic resonance (1H NMR) spectroscopy. In particular, the proton line broadening and enhanced spin-lattice relaxation have been used to determine proton-metal ion distances for several assigned nuclei in the peptide-metal ion complex. These distances have been used in conjunction with other constraints and a distance algorithm procedure to demonstrate that the structure of the peptide-metal complex as shown by 1H NMR is consistent with the structure of the EF calcium binding loop in the X-ray structure of parvalbumin but that the available 1H NMR distances do not uniquely define the solution structure.  相似文献   

13.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

14.
Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.  相似文献   

15.
The existence of coupled residue motions on various time scales in enzymes is now well accepted, and their detailed characterization has become an essential element in understanding the role of dynamics in catalysis. To this day, a handful of enzyme systems has been shown to rely on essential residue motions for catalysis, but the generality of such phenomena remains to be elucidated. Using NMR spectroscopy, we investigated the electronic and dynamic effects of several mutations at position 105 in TEM-1 beta-lactamase, an enzyme responsible for antibiotic resistance. Even in absence of substrate, our results show that the number and magnitude of short and long range effects on (1)H-(15)N chemical shifts are correlated with the catalytic efficiencies of the various Y105X mutants investigated. In addition, (15)N relaxation experiments on mutant Y105D show that several active-site residues of TEM-1 display significantly altered motions on both picosecond-nanosecond and microsecond-millisecond time scales despite many being far away from the site of mutation. The altered motions among various active-site residues in mutant Y105D may account for the observed decrease in catalytic efficiency, therefore suggesting that short and long range residue motions could play an important catalytic role in TEM-1 beta-lactamase. These results support previous observations suggesting that internal motions play a role in promoting protein function.  相似文献   

16.
Poly[d(A-br5C).d(G-T)], a synthetic polynucleotide with a 50% A-T base composition, undergoes a reversible, highly co-operative transition between the right-handed B and left-handed Z conformations. The latter is stabilized at both elevated temperature and ionic strength. The B and Z-forms of poly[d(A-br5C).d(G-T)] coexist in 4.6 M-NaCl at 45 degrees C. Due to slow exchange, two sets of Tim and Gim resonances are observed and can be assigned to the B and Z conformations (the chemical shifts are, respectively, Tim = 13.4, 14.1 p.p.m. (parts/million); and Gim = 11.9, 12.4 p.p.m.). Measurements of the 1H spin-lattice (R1) and spin-spin (R2) relaxation rates of the exchangeable thymine (Tim) and guanine (Gim) imino protons have been used to probe the internal dynamics of the B and Z-forms of poly[d(A-br5C).d(G-T)] and the mechanism of the B-Z transition. The proton exchange behavior in the B and Z conformations is quite different. At elevated temperature, R1 for both Tim and Gim in the B conformation is dominated by exchange with the solvent, with Tim exchanging more rapidly than Gim. This demonstrates that exchange involves the opening of single base-pairs and that neighboring A-T and G-br5C base-pairs exchange independently of each other. B-form poly[d(A-br5C).d(G-T)] is unusual in that there is an acceleration of the Tim exchange rate with increasing NaCl concentration. Conversion to the Z-form by addition of 4.5 M-NaCl dramatically reduces both the Tim and Gim exchange rates (estimated to be less than 2 s-1 at 70 degrees C). Thus, the G-br5C base-pair and, in particular, the A-T base-pair are stabilized in the Z conformation. By measuring relaxation rates at 45 to 50 degrees C where the B and Z-forms are in equilibrium, we find that the B-Z interconversion rates are less than two per second. In the B conformation at 25 degrees C, the dipolar contributions to the imino proton relaxation rates are about one-third of those expected on the basis of a rigid rod model for 65 base-pair fragments, a difference we assign to large amplitude (30 degrees high frequency (less than 100 ns) out-of-plane motions of the bases. Conversion to the Z conformation has little effect on the dipolar contributions to relaxation, i.e. on the internal motions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Roberts MF  Cui Q  Turner CJ  Case DA  Redfield AG 《Biochemistry》2004,43(12):3637-3650
Phosphorus-spin longitudinal relaxation rates of the DNA duplex octamer [d(GGAATTCC)](2) have been measured from 0.1 to 17.6 T by means of conventional and new field-cycling NMR methods. The high-resolution field-cycling method is identical to a conventional relaxation experiment, except that after preparation the sample is moved pneumatically from its usual position at the center of the high-resolution magnet upward to a lower field above its normal position and then returned to the center for readout after it has relaxed for the programmed relaxation delay at the low field. This is the first measurement of all longitudinal relaxation rates R(1) of a nuclear species in a macromolecule over virtually the entire accessible magnetic field range. For detailed analysis, three magnetic field regions can be delineated: (i) dipolar relaxation dominates at fields below 2 T, (ii) chemical shift anisotropy (CSA) relaxation is roughly constant from 2 to 6 T, and (iii) a square-law increasing dependence is seen at fields higher than approximately 6 T due to internal motion CSA relaxation. The analysis provides a rotational correlation time (tau(r) = 4.1 +/- 0.3 ns) for the duplex at both 1.5 and 0.25 mM concentrations (of duplex) at 22 degrees C. For comparison, extraction of tau(r) in the conventional way from the ratio of T(1)/T(2) at 14 T yields 3.2 ns. The tau(r) discrepancy disappears when we exclude the contribution of internal motion from the R(1) in the ratio. The low-field dipolar relaxation provides a weighted inverse sixth power sum of the distances from the phosphorus to the protons responsible for relaxation. This average is similar for all phosphates in the octamer and similar to that in previous B-DNA structures (its inverse sixth root is about 2.40 A for two different concentrations of octamer). The CSA relaxation at intermediate field provides an estimate of the order parameter squared, S(c)(2), for each phosphorus. S(c)(2) is about 0.7-1, clearly different for different phosphate linkages in the octamer duplex. The increasing R(1) at high fields reflects CSA relaxation due to internal motions, for which a correlation time, tau(hf), can be approximately extracted with the aid of additional measurements at 14.0 and 17.6 T. We conclude that tau(hf) values are relatively large, in the range of about 150 ps. Insight into the motions leading to this correlation time was gained by a 28 ns molecular dynamics simulation of the molecule. S(2) and tau(s) (corresponding to tau(hf)) predicted by this simulation were in good agreement with the experimental values from the field-cycling data. Both the effect of Mg(2+) on the dynamic parameters extracted from (31)P relaxation rates and the field dependence of relaxation rates for several protons of the octamer were measured. High-resolution field cycling opens up the possibility of monitoring residue-specific dipolar interactions and dynamics for the phosphorus nuclei of diverse oligonucleotides.  相似文献   

18.
It has been shown previously that two types of motion are adequate to describe the partially relaxed 2H NMR line shapes (inversion recovery experiment) for the backbone portion of the glycolipid 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL) in the highly ordered gel phase (Auger, M.A., D. Carrier, I.C.P. Smith, and H. C. Jarrell. 1990. J. Am. Chem. Soc. 112:1373-1381). This study extends the latter investigation to the more fluid liquid-crystalline phase, where more complex motions are anticipated. Analyses of the powder line shapes and oriented sample relaxation data for both the glycerol backbone and head group regions of this lipid have been performed. The dynamics of glycerol at the C3 position in the gel state have been described by large angle jumps about the C2-C3 bond with a correlation time in the fast-limit motional regime (omega o tau c much less than 1) and site populations 0.46, 0.34, and 0.20. The present data show that in the liquid-crystalline phase the internal jump rate is maintained, and two additional motions are necessary to describe the dependence of the relaxation rate on the orientation of the director with respect to the magnetic field direction. These are rotation about the molecular long axis with a correlation time in the slow-limit motional regime very near to the T1 minimum (omega o tau c approximately 0.65), and molecular fluctuations about the order director (modeled by a Maier-Saupe restoration potential). This treatment was also extended to the glucose head group where additional segmental motion about the glycosidic bond has been reported previously. While the two motions dominating relaxation at the glycerol C3 segment reproduce the general relaxation features of the glucose head group, the results suggest that additional motion about the glycosidic linkage must be present. This study is a stringent test of the motional model chosen earlier because relaxation data were obtained at two 2H NMR frequencies using two relaxation experiments (T1Z and T1Q) and two types of sample preparation (oriented and dispersed multibilayers). The results strongly uphold the choice of model and indicate the utility of both oriented samples and the T1Q experiment.  相似文献   

19.
F Hayashi  K Akasaka  H Hatano 《Biopolymers》1977,16(3):655-667
The molecular mechanism of thermal unfolding of yeast tRNAPhe in 20 mM NaCl, 1 mM EDTA, and 10 mM MgSO4, pH 7.1 ± 0.1, has been examined by 31P magnetic relaxation and the nuclear Overhauser effect methods at 40.48 MHz in the temperature range of 22.5–80°C. Two partially resolved 31P resonance peaks of yeast tRNAPhe have been found to behave distinctively different in their longitudinal relaxation times. Individual intensities of the two partially resolved peaks have been quantitatively estimated by the use of relaxation data and the nuclear Overhauser effect as a function of temperature. The results of these observations largely support the earlier suggestion by Guéron and Shulman that the high- and low-field parts of the main 31P resonance cluster originate from phosphorus nuclei belonging to the double-helical and nonhelical regions of the tRNA, respectively. The spin-lattice relaxation of the phosphorus nucleus has been found to be determined dominantly by the dipolar interaction with the surrounding ribose protons at this observing frequency. Rotational correlation times for the two portions of the ribose-phosphate backbone of the tRNA have been separately deduced from the quantitative treatment of the 31P nuclear spin-lattice relaxation times (T1) and the nuclear Overhauser effect. The result indicates that the two portions undergo internal motions at distinctively different rates of 108–1010 sec?1 order in the temperature range of 22.5–80°C, and that the thermal activation of these motions occurs at least in three distinctive steps, i.e., 22.5–31, 31–40, and 40–80°C. The rates of the internal motions and the associated activation energies in respective steps give some insight into the thermo-induced change of the yeast tRNAPhe structure.  相似文献   

20.
A C Wang  S G Kim  P F Flynn  S H Chou  J Orban  B R Reid 《Biochemistry》1992,31(16):3940-3946
Nuclear magnetic resonance experiments reveal that the base H8/H6 protons of oligoribonucleotides (RNA) have T1 relaxation times that are distinctly longer than those of oligodeoxyribonucleotides (DNA). Similarly, the T1 values for the RNA H1' protons are approximately twice those of the corresponding DNA H1' protons. These relaxation differences persist in single duplexes containing covalently linked RNA and DNA segments and cause serious overestimation of distances involving RNA protons in typical NOESY spectra collected with a duty cycle of 2-3 s. NMR and circular dichroism experiments indicate that the segments of RNA maintain their A-form geometry even in the interior of DNA-RNA-DNA chimeric duplexes, suggesting that the relaxation times are correlated with the type of helix topology. The difference in local proton density is the major cause of the longer nonselective T1s of RNA compared to DNA, although small differences in internal motion cannot be completely ruled out. Fortunately, any internal motion differences that might exist are shown to be too small to affect cross-relaxation rates, and therefore reliable distance data can be obtained from time-dependent NOESY data sets provided an adequately long relaxation delay is used. In hybrid or chimeric RNA-DNA duplexes, if the longer RNA relaxation times are not taken into account in the recycle delay of NOESY pulse sequences, serious errors in measuring RNA proton distances are introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号