首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous ligands for the hepatic lectin which is specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) were isolated from rat liver rough microsomes and primary cultured hepatocytes by affinity chromatography on an immobilized MBP column. Western blotting using specific antisera revealed that serum glycoproteins, alpha 1-macroglobulin, alpha 1-antitrypsin, and alpha 1-acid glycoprotein, and a lysosomal enzyme, beta-glucuronidase were the major constituents of the endogenous ligands. These endogenous ligands consisted of high mannose-type oligosaccharides of Man9GlcNAc2 and Man8GlcNAc2, and had rapid turnover rates with an average half-life of 45 min, indicating that they were mainly composed of biosynthetic intermediates of glycoproteins. In view of the identification of the endogenous ligands as the biosynthetic intermediates of glycoproteins, the possible functions of the intracellular lectin are discussed in relation to the intracellular transport of glycoproteins.  相似文献   

2.
Rats were given pulse injections of D-[14C]mannose and were killed at various times up to 60 min after injection. Rough, smooth, and Golgi fractions were prepared from liver, and alpha 1-acid glycoprotein was isolated from Lubrol extracts of the fractions. The kinetics of incorporation of D-[14C]mannose into total protein, Lubrol protein, and alpha 1-acid glycoprotein showed that proteins associated with rough fractions had particularly high specific radioactivities at early times of incorporation. One explanation for the kinetic data is that glycoproteins contain a high mannose content at early times of assembly of oligosaccharide chains. This idea was confirmed in the case of alpha 1-acid glycoprotein by isolation of a high mannose containing precursor species of alpha 1-acid glycoprotein from rough fractions of liver. This species contained 56 residues of hexose (mainly mannose) compared with 35 residues of hexose (roughly equal amounts of mannose and galactose) which are found in the native protein. It is proposed that the high mannose precursor is a form of alpha 1-acid glycoprotein that exists at an early stage in assembly of the glycoprotein and which contains largely unprocessed carbohydrate chains. In addition, evidence is presented from amino acid analyses and gel electrophoresis of the high mannose precursor and another fraction from which it is formed by limited tryptic treatment, that pro-forms of alpha 1-acid glycoprotein with extensions of the polypeptide chain may also exist.  相似文献   

3.
We have investigated the oligosaccharide requirements of the UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum. Uteroferrin, an acid hydrolase, was phosphorylated by the three N-acetylglucosaminylphosphotransferases, and the phosphorylated oligosaccharides were isolated and analyzed by ion suppression high performance liquid chromatography. In all three cases, the phosphorylated species contained 6 or more mannose residues. Phosphorylation of the Man5GlcNAc2 oligosaccharide could not be detected even though this was the major species on the native uteroferrin. The Man5GlcNAc2 oligosaccharides lack alpha 1,2-linked mannose residues, whereas the larger oligosaccharides contain 1 or more mannose residues in this linkage. Treatment of intact uteroferrin with an alpha 1,2-specific mannosidase-generated molecules whose oligosaccharides consisted almost entirely of species with 5 mannose residues. The N-acetylglucosaminylphosphotransferases could no longer phosphorylate such molecules. These data indicate that at least 1 alpha 1,2-linked mannose residue must be present on uteroferrin's oligosaccharide for phosphorylation to occur.  相似文献   

4.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

5.
Agents that affect intracellular cation and pH gradients and inhibit energy production have been tested for their ability to modulate the processing and secretion of the free alpha subunit and the alpha beta dimer of human chorionic gonadotropin (hCG) by cultured human trophoblastic cells (JAR). Incubation of JAR cells with monensin or nigericin, monovalent cation ionophores that produce equilibration of Na+ and K+ across cellular membranes, dicyclohexylcarbodiimide, an agent that inhibits intracellular membrane ATPases, and methylamine, which neutralizes intracellular pH gradients, produced similar effects on hCG processing and secretion. All these agents inhibited the processing of the asparagine-linked oligosaccharide chains of free alpha subunit and the alpha and beta subunits contained in the hCG dimer. Moreover, after treatment of JAR cells with these agents, there was an intracellular accumulation of precursor forms and an inhibition of secretion of "mature" forms of hCG. Monensin affected the processing and secretion of hCG subunits differently at different concentrations. At 5 X 10(-7) M, monensin inhibited the processing of the asparagine-linked oligosaccharides of hCG without altering the rate-limiting step in the secretory pathway or blocking hCG secretion. The intracellular hCG subunit precursors in both control and monensin-treated cells contained a similar array of high mannose oligosaccharides, predominantly of the Man8GlcNAc2 and Man9GlcNAc2 types. However, monensin-treated cells secreted hCG subunits that contained endo H-sensitive oligosaccharides of the high mannose (mostly Man5GlcNAc2) and hybrid types rather than the endo H-resistant complex chains synthesized by control cells. Nevertheless, a full complement of serine-linked oligosaccharides was added to the hCG-beta subunit in monensin-treated cells. These results indicate that the intracellular movement of hCG from the rough endoplasmic reticulum to the cell surface was not inhibited by monensin at a concentration that impaired Golgi-localized steps in the processing of asparagine-linked oligosaccharides. At 5 X 10(-6) M, monensin significantly inhibited secretion of hCG and created a new rate-limiting step in the processing pathway. hCG subunits bearing Man5GlcNAc2 units accumulated intracellularly, suggesting that the equilibration of intracellular Na+/K+ pools blocked oligosaccharide processing at an intra-Golgi point, perhaps by inhibiting movement of the glycoprotein hormone from the "cis" to the "trans" Golgi compartment. Since the other drugs mentioned above produced similar effects on hCG processing and secretion, it appears that maintenance of intracellular cation and pH gradients is necessary for the intra-Golgi transport of glycoprotein hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

7.
Processing of N-linked oligosaccharides in soybean cultured cells   总被引:4,自引:0,他引:4  
Evidence, based on both in vivo and in vitro studies with suspension-cultured soybean cells, is presented to demonstrate the processing of the oligosaccharide chain of plant N-linked glycoproteins. Following a 1-h incubation of soybean cells with [2-3H]mannose, the predominant glycopeptide obtained by pronase digestion of the membrane fraction was a Man7- or Man8GlcNAc2-Asn (GlcNAc, N-acetylglucosamine). However, the major oligosaccharide isolated from the lipid-linked oligosaccharides of these cells was a Glc2- or Glc3Man9GlcNAc2. Soybean cells were incubated with [2-3H]mannose and the incorporation of mannose into Pronase-released glycopeptides was followed during a 2-h chase. During the first 10 min of labeling, the radioactivity was mostly in a large-sized glycopeptide that appeared to be a Glc1Man9GlcNAc2-peptide. During the next 60 to 90 min of chase, this radioactivity was shifted to smaller and smaller-sized glycopeptides indicating that removal of sugars (i.e., processing) had occurred. Both glucosidase and mannosidase activity was detected in membrane preparations of soybean cells. Nine different glycopeptides were isolated from Pronase digests of soybean cell membrane fractions. These glycopeptides were purified by repeated gel filtration on columns of Bio-Gel P-4. Partial characterization of these glycopeptides by endoglucosaminidase H and alpha-mannosidase digestion, and by analysis of the products, suggested the following glycopeptides: Glc1Man9GlcNAc2-Asn, Man8GlcNAc2-Asn, Man7GlcNAc2-Asn, Man6GlcNAc2-Asn, and Man5GlcNAc2-Asn.  相似文献   

8.
Two alpha-D-mannosidases have previously been identified in rat epididymis. This communication reports the purification and characterization of the "acid" alpha-D-mannosidase. The enzyme was purified over 1000-fold to near homogeneity by acetone and (NH4)2SO4 precipitation followed by ion-exchange and hydroxylapatite chromatography. The molecular weight of the enzyme was estimated to be 220,000 by gel filtration. Polyacrylamide gel electrophoresis of the native enzyme under two conditions of buffer and pH showed a single band when stained for protein while electrophoresis under denaturing conditions resulted in bands of apparent Mr 60,000 and 31,000. The enzyme is a glycoprotein containing about 5.6% hexose. In addition to mannose (3.1%) and glucosamine (2.0%), the enzyme also contained small amounts of glucose, fucose, and galactose. Chemical analysis indicated the absence of sialic acid. The substrate specificity of the purified enzyme was investigated using linear and branched mannose-containing oligosaccharides. The enzyme cleaved linear oligosaccharides [Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc and Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc] very efficiently. However, little or no activity was observed toward high mannose oligosaccharides (Man9GlcNAc through Man5GlcNAc) or the branched trimannosyl derivative Man3GlcNAc. This specificity is very similar to that observed with rat kidney lysosomal alpha-D-mannosidase. Additional evidence that the epididymal enzyme is essentially a lysosomal alpha-D-mannosidase is the fact that polyclonal antibody prepared against the purified epididymal enzyme cross-reacted with lysosomal alpha-D-mannosidase from several rat tissues and with acidic alpha-D-mannosidase of a human cell line, results suggesting that the antibody will be useful in studying the biosynthesis and turnover of lysosomal alpha-D-mannosidases in at least two species.  相似文献   

9.
The soluble alpha-mannosidase of rat liver, originally described as a cytoplasmic alpha-mannosidase, has been purified to homogeneity by conventional techniques. The purified enzyme has an apparent molecular weight of 350,000 and is composed of 107-kDa subunits. The soluble alpha-mannosidase has the same enzymatic properties as the endoplasmic reticulum (ER) membrane alpha-mannosidase of rat liver (Bischoff, J., and Kornfeld, R. (1983) J. Biol. Chem. 258, 7909-7910) which is believed to play a role in oligosaccharide processing in the rough ER. Like the membrane-bound ER alpha-mannosidase, the soluble alpha-mannosidase can hydrolyze alpha-linked mannose from both p-nitrophenyl alpha-mannoside (Km = 0.14 mM) and high mannose oligosaccharides, is not inhibited by the mannose analogues swainsonine and 1-deoxymannojirimycin, is stabilized by MnCl2 or CoCl2, and does not bind to concanavalin A-Sepharose. A goat polyclonal antibody raised against the purified soluble alpha-mannosidase specifically recognizes the rat liver membrane-bound ER alpha-mannosidase, leading us to propose that they are two forms of the same enzyme and that the soluble form is derived from the ER membrane alpha-mannosidase by proteolysis. The antibody also cross-reacts with both the soluble and membrane-bound forms of ER alpha-mannosidase activity in cultured Chinese hamster ovary cells and rat H35 hepatoma cells. Since the ER alpha-mannosidase is presumed to be involved in the early steps of oligosaccharide processing, the action of the purified soluble form of the enzyme on high mannose oligosaccharides was examined. Surprisingly, the enzyme released free mannose from oligosaccharides ranging in size from Glc1Man9GlcNAc to Man5GlcNAc with almost equal efficiency. However, a long term incubation of the enzyme with Man9GlcNAc led to the accumulation of Man7GlcNAc and produced only small amounts of Man6GlcNAc and Man5GlcNAc. Structural analysis of these reaction products indicated that the purified soluble form of ER alpha-mannosidase shows little specificity for which mannose residues it removes from Man9GlcNAc. In contrast, as shown in the accompanying paper, the intracellular action of ER alpha-mannosidase on glycoprotein-bound Man9GlcNAc2 is highly specific.  相似文献   

10.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

11.
An enzyme has been found in Triton-treated rat liver Golgi membranes which trims Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1-3Man. By removing a glucosylmannose disaccharide and yielding only one Man8GlcNAc isomer, this endo-alpha-D-mannosidase provides a processing route alternative to the sequential actions of alpha-glucosidase II and alpha-mannosidase I. The endomannosidase was fully active in the presence of 1-deoxynojirimycin and EDTA which inhibited exoglycosidase release of glucose and mannose, respectively, and these agents were, therefore, included in the standard assay. The specific activity of the endomannosidase was found to be 69-fold greater in Golgi than in rough endoplasmic reticulum (RER) membranes, and Golgi-RER mixing experiments excluded the possibility that the low activity in the RER was the result of some inhibitor present in this fraction. The neutral pH optimum (approximately 7.0) of the enzyme was consistent with a role in N-linked oligosaccharide processing. The existence of an endo-alpha-D-mannosidase pathway for glucose removal could provide an explanation for the incomplete block in oligosaccharide processing which is observed in cells with inhibited or deficient alpha-glucosidase.  相似文献   

12.
Previously, Man8-14GlcNAc oligosaccharides were isolated from highly purified Saccharomyces cerevisiae invertase and shown by one-dimensional 1H NMR spectroscopy and alpha 1,2-linkage-specific mannosidase digestion to constitute a homologous series of nearly homogeneous compounds, which appeared to define the intermediates in oligosaccharide core synthesis in yeast (Trimble, R.B. and Atkinson, P.H. (1986) J. Biol. Chem., 261, 9815-9824). To evaluate whether invertase oligosaccharides reflected global core processing of yeast glycans, the soluble glycoprotein pool of disrupted log-phase cells was digested with endo-beta-N-acetyl-glucosaminidase H and Man8-13GlcNAc were isolated by Bio-Gel P-4 chromatography. Although analysis of each size class by one-dimensional 400 MHz and two-dimensional 500 MHz phase-sensitive COSY 1H NMR spectroscopy revealed considerable structural heterogeneity in all but Man8GlcNAc, the major positional isomer in Man9-13GlcNAc (approximately 50%) was identical to that previously elucidated on invertase. The heterogeneity resided in four families of oligosaccharides: (i) Glc3Man9GlcNAc----Man8 GlcNAc trimming intermediates; (ii) alpha-mannosidase degradation products of the principal isomers; (iii) mannan elongation intermediates; (iv) core structures with the alpha 1,2-linked mannose usually removed by the processing alpha-mannosidase. The potential for the vacuolar alpha-mannosidase (AMS1 gene product) to generate heterogeneity in vitro was confirmed by isolating oligosaccharides from AMS1 and ams1 yeast strains in the presence of a Man13GlcNAc[3H]-ol marker (where GlcNAc[3H]-ol is N-acetylglucosamin [1-3H]itol). Degradation of the Man13GlcNAc[3H]-ol to Man9-12GlcNAc[3H]-ol occurred in the former, but not in the latter. A role for the vacuolar alpha-mannosidase in generating at least some heterogeneity in vivo was inferred from the 1H NMR spectrum of the AMS1 Man11GlcNAc pool, which showed more structural isomerism than seen in the spectrum of a comparable ams1 Man11GlcNAc preparation. Thus, the principal biosynthetic pathway of inner core mannan in Saccharomyces is defined by the Man8-13GlcNAc oligosaccharides found on external invertase, while structural heterogeneity in these size classes results from precursor processing in the endoplasmic reticulum, core extension in the Golgi and metabolic degradation in the vacuole.  相似文献   

13.
The posttranslational processing of the asparagine-linked oligosaccharide chain of the major myelin glycoprotein (P0) by Schwann cells was evaluated in the permanently transected, adult rat sciatic nerve, where there is no myelin assembly, and in the crush injured nerve, where there is myelin assembly. Pronase digestion of acrylamide gel slices containing the in vitro labeled [3H]mannose and [3H]fucose P0 after electrophoresis permitted analysis of the glycopeptides by lectin affinity and gel filtration chromatography. The concanavalin A-Separose profile of the [3H]mannose P0 glycopeptides from the transected nerve revealed the high-mannose-type oligosaccharide as the predominant species (72.9%), whereas the normally expressed P0 glycoprotein that is assembled into the myelin membrane in the crushed nerve contains 82.9-91.9% of the [3H]mannose radioactivity as the complex-type oligosaccharide chain. Electrophoretic analysis of immune precipitates verified the [3H]mannose as being incorporated into P0 for both the transected and crushed nerve. The high-mannose-type glycopeptides of the transected nerve isolated from the concanavalin A-Sepharose column were hydrolyzed by endo-beta-N-acetylglucosaminidase H, and the oligosaccharides were separated on Biogel P4. Man8GlcNAc and Man7GlcNAc were the predominant species with radioactivity ratios of 12.5/7.2/1.4/1.0 for the Man8, Man7, Man6, and Man5 oligosaccharides, respectively. Jack bean alpha-D-mannosidase gave the expected yields of free Man and ManGlcNAc from these high-mannose-type oligosaccharides. The data support the notion that at least two alpha-1,2-mannosidases are responsible for converting Man9GlcNAc2 to Man5GlcNAc2. The present experiments suggest distinct roles for each mannosidase and that the second mannosidase (I-B) may be an important rate-limiting step in the processing of this glycoprotein with the resulting accumulation of Man8GlcNAc2 and Man7GlcNAc2 intermediates. Pulse chase experiments, however, demonstrated further processing of this high-mannose-type oligosaccharide in the transected nerve. The [3H]mannose P0 glycoprotein with Mr of 27,700 having the predominant high-mannose-type oligosaccharide shifted its Mr to 28,500 with subsequent chase. This band at 28,500 was shown to have the complex-type oligosaccharide chain and to contain fucose attached to the core asparagine-linked GlcNAc residue. The extent of oligosaccharide processing of this down-regulated glycoprotein remains to be determined.  相似文献   

14.
Cleavage of yeast invertase by alpha-chymotrypsin produced a number of small glycopeptides that were highly active as elicitors of ethylene biosynthesis and phenylalanine ammonia-lyase in suspension-cultured tomato cells. Five of these elicitors were purified and their amino acid sequence determined. They all had sequences corresponding to known sequences of yeast invertase, and all contained an asparagine known to carry a N-linked small high mannose glycan. The most active glycopeptide elicitor induced ethylene biosynthesis and phenylalanine ammonia-lyase half-maximally at a concentration of 5-10 nM. Structure-activity relationships of the peptide part were analyzed by further cleavage of a defined glycopeptide elicitor with various proteolytic enzymes. Removal of the C-terminal phenylalanine enhanced the elicitor activity, whereas removal of N-terminal arginine impaired it. A glycopeptide with the peptide part trimmed to the dipeptide arginine-asparagine was still fully active as elicitor. Glycopeptides with identical amino acid sequences were further separated into fractions differing in the oligosaccharide side chain. A given peptide had high elicitor activity when carrying a glycan with 10-12 mannosyl residues (Man10-12GlcNAc2), a 3-fold lower activity when carrying Man9GlcNAc2 and a 100-fold lower activity when carrying Man8GlcNAc2. The oligosaccharides, released by endo-beta-N-acetylglucosaminidase H from the pure glycopeptide elicitors, acted as suppressors of elicitor-induced ethylene biosynthesis and phenylalanine ammonia-lyase activity. A series of such oligosaccharides in the size range of Man8-13GlcNAc was purified. The structure and composition of the purified oligosaccharides corresponded to the known small high mannose glycans of yeast invertase as verified by 1H NMR spectroscopy at 600 MHz. The highest suppressor activities were obtained with the oligosaccharides containing 10-12 mannosyl residues (Man10-12GlcNAc). The oligosaccharide Man8 GlcNAc was ineffective as a suppressor. Thus, the structural requirements for the free oligosaccharides to act as efficient suppressors were the same as for the oligosaccharide side chains of the glycopeptides for high elicitor activity. We propose that the glycan suppressors bind to the same recognition site as the glycopeptide elicitors without inducing a response.  相似文献   

15.
The mannose analogue, 1-deoxymannojirimycin, which inhibits Golgi alpha-mannosidase I but not endoplasmic reticulum (ER) alpha-mannosidase has been used to determine the role of the ER alpha-mannosidase in the processing of the asparagine-linked oligosaccharides on glycoproteins in intact cells. In the absence of the inhibitor, the predominant oligosaccharide structures found on the ER glycoprotein 3-hydroxy-3-methylglutaryl-CoA reductase in UT-1 cells are single isomers of Man6GlcNAc and Man8GlcNAc. In the presence of 150 microM 1-deoxymannojirimycin, the Man8GlcNAc2 isomer accumulates indicating that the 1-deoxymannojirimycin-resistant ER alpha-mannosidase is responsible for the conversion of Man9GlcNAc2 to Man8GlcNAc2 on reductase. The processing of Man8GlcNAc2 to Man6GlcNAc2, however, must be attributed to a 1-deoxymannojirimycin-sensitive alpha-mannosidase. When cells were radiolabeled with [2-(3)H]mannose for 15 h in the presence of 1-deoxymannojirimycin and then further incubated for 3 h in nonradioactive medium without inhibitor, the Man8GlcNAc2 oligosaccharides which accumulated during the labeling period were partially trimmed to Man6GlcNAc. This finding suggests that a second alpha-mannosidase, sensitive to 1-deoxymannojirimycin, resides in the crystalloid ER and is responsible for trimming the reductase oligosaccharide chain from Man8GlcNAc2 to Man6GlcNAc2. To determine if ER alpha-mannosidase is responsible for trimming the oligosaccharides of all glycoproteins from Man9GlcNAc to Man8GlcNAc, the total asparagine-linked oligosaccharides of rat hepatocytes labeled with [2-(3)H]mannose in the presence or absence of 1.0 mM 1-deoxymannojirimycin were examined. the inhibitor prevented the formation of complex oligosaccharides and caused a 30-fold increase in the amount of Man9GlcNAc2 and a 13-fold increase in the amount of Man8GlcNAc2 present on secreted glycoproteins. This result suggests that only one-third of the secreted glycoproteins is initially processed by ER alpha-mannosidase, and two-thirds are processed by Golgi alpha-mannosidase I or another 1-deoxymannojirimycin-sensitive alpha-mannosidase. The inhibitor caused only a 2.6-fold increase in the amount of Man9GlcNAc2 on cellular glycoproteins suggesting that a higher proportion of these glycoproteins are initially processed by the ER alpha-mannosidase. We conclude that some, but not all, hepatocyte glycoproteins are substrates for ER alpha-mannosidase which catalyzes the removal of a specific mannose residue from Man9GlcNAc2 to form a single isomer of Man8GlcNAc2.  相似文献   

16.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

17.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

18.
19.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

20.
The structures of the predominant high mannose oligosaccharides present in a human IgM myeloma protein (Patient Wa) have been determined. The IgM glycopeptides, produced by pronase digestion, were fractionated on DEAE-cellulonalysis shows that glycopeptide I contains Asn, Pro, Ala, Thr, and His and glycopeptide II contains Asn, Val, and Ser, which are the same amino acids found in the sequences around Asn 402 and Asn 563 respectively, to which high mannose oligosaccharides are attached in IgM (Patient Ou) (Putnman, F.W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A. (1973) Science 182, 287-290). The high mannose glycopeptides in IgM (Wa) exhibit heterogeneity in the oligosaccharide portion. Structural analysis of the major oligosaccharides indicates that the simplest structure is: (see article of journal). The larger oligosaccharides present have additional mannose residues linked alpha 1 yields 2 to terminal mannose residues in the above structure. Glycopeptide I contains primarily Man5 and Man6 species, while glycopeptide II contains Man6 and Man8 species. The two Man6 oligosaccharides have different branching patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号