首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The short isoform of ErbB3-binding protein 1 (Ebp1), p42, is considered to be a potent tumor suppressor in a number of human cancers, although the mechanism by which it exerts this tumor-suppressive activity is unclear. Here, we report that p42 interacts with the cSH2 domain of the p85 subunit of phosphathidyl inositol 3-kinase (PI3K), leading to inhibition of its lipid kinase activity. Importantly, we found that p42 induces protein degradation of the p85 subunit and further identified HSP70/CHIP complex as a novel E3 ligase for p85 that is responsible for p85 ubiquitination and degradation. In this process, p42 couples p85 to the HSP70/CHIP-mediated ubiquitin–proteasomal system (UPS), thereby promoting a reduction of p85 levels both in vitro and in vivo. Thus, the tumor-suppressing effects of p42 in cancer cells are driven by negative regulation of the p85 subunit of PI3K.  相似文献   

3.
4.
5.
γ-Secretase is an enzymatic complex, composed of presenilin 1 (PS1), nicastrin, pen-2, and aph-1, and is responsible for the intramembranous cleavage of various type-I membrane proteins. The level of each component is tightly regulated in a cell via proteasomal degradation. On the other hand, it has previously been reported that PS1/γ-secretase is involved in the activation of phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway. PI3K is inhibited in Alzheimer’s disease (AD) brain, whereas the effects of PI3K inhibition on the metabolism of PS1/γ-secretase have not been elucidated. Here, we demonstrate that the treatment of neurons with PI3K inhibitors leads to increased levels of PS1/γ-secretase components through an inhibitory effect on their degradation. Moreover, PI3K inhibition accelerated ubiquitination of PS1. We further show the evidence that the PS1 ubiquitination after PI3K inhibition is represented by the multiple mono-ubiquitination, instead of poly-ubiquitination. Accordingly, treatment of cells with PI3K inhibitor led to a differential intracellular redistribution of PS1 from the one observed after the proteasomal inhibition. These results suggest that PI3K inhibition may trigger the multiple mono-ubiquitination of PS1, which precludes the degradation of PS1/γ-secretase through the proteasomal pathway. Since PS1/γ-secretase is deeply involved in the production of Aβ protein, a deeper knowledge into its metabolism could contribute to a better elucidation of AD pathogenesis.  相似文献   

6.
Signaling via the phosphoinositide 3-kinase (PI3K)/AKT pathway is crucial for the regulation of endothelial cell (EC) proliferation and survival, which involves the AKT-dependent phosphorylation of the DNA repair protein p21(Cip1) at Thr-145. Because p21(Cip1) is a short-lived protein with a high proteasomal degradation rate, we investigated the regulation of p21(Cip1) protein levels by PI3K/AKT-dependent signaling. The PI3K inhibitors Ly294002 and wortmannin reduced p21(Cip1) protein abundance in human umbilical vein EC. However, mutation of the AKT site Thr-145 into aspartate (T145D) did not increase its protein half-life. We therefore investigated whether a kinase downstream of AKT regulates p21(Cip1) protein levels. In various cell types, AKT phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). Upon serum stimulation of EC, GSK-3beta was phosphorylated at Ser-9. Site-directed mutagenesis revealed that GSK-3 in vitro phosphorylated p21(Cip1) specifically at Thr-57 within the Cdk binding domain. Overexpression of GSK-3beta decreased p21(Cip1) protein levels in EC, whereas the specific inhibition of GSK-3 with lithium chloride interfered with p21(Cip1) degradation and increased p21(Cip1) protein about 10-fold in EC and cardiac myocytes (30 mm, p < 0.001). These data indicate that GSK-3 triggers p21(Cip1) degradation. In contrast, stimulation of AKT increases p21(Cip1) via inhibitory phosphorylation of GSK-3.  相似文献   

7.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that is regulated under conditions of cellular stress. ASK1 phosphorylates c-Jun N-terminal kinase (JNK) and elicits an apoptotic response. ASK1 activity is regulated at multiple levels, 1 of which is through inhibition by cytosolic chaperones of the heat shock protein (Hsp) 70 family. Among the proteins that determine Hsp70 function, CHIP (C-terminus of Hsp70-interacting protein) is a cochaperone and ubiquitin ligase that interacts with Hsp70 through an amino-terminal tetratricopeptide repeat (TPR) domain. Prominent among the cellular functions mediated by CHIP is protection against physiologic stress. Because ASK1 is known to contain a TPR-acceptor site, we examined the role of CHIP in regulating ASK1 function. CHIP interacted with ASK1 in a TPR-dependent fashion and induced ubiquitylation and proteasome-dependent degradation of ASK1. Targeting of ASK1 by CHIP inhibited JNK activation in response to oxidative challenge and reduced ASK1-dependent apoptosis, whereas short interfering RNA (siRNA)-dependent depletion of CHIP enhanced JNK activation. Consistent with its ability to reduce cytoplasmic ASK1 levels, CHIP triggered the translocation of ASK1 partner protein death-associated protein (Daxx) into the nucleus, where it is known to activate an antiapoptotic response. These results indicate that CHIP regulates ASK1 activity by inducing its ubiquitylation and degradation, which, together with its effects on Daxx localization, provides a mechanism for the antiapoptotic effects of CHIP observed in the face of cellular and physiologic stress.  相似文献   

8.
Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.  相似文献   

9.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

10.
The voltage-gated KCNQ2/3 and KCNQ3/5 K(+) channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithelial Na(+) channel, which increases the abundance of channel protein in the cell membrane. In this study, we investigated the mechanism(s) of SGK-1 regulation of M-type KCNQ channels expressed in Xenopus oocytes. SGK-1 significantly upregulated the K(+) current amplitudes of KCNQ2/3 and KCNQ3/5 channels approximately 1.4- and approximately 1.7-fold, respectively, whereas the kinase-inactive SGK-1 mutant had no effect. The cell surface levels of KCNQ2-hemagglutinin/3 were also increased by SGK-1. Deletion of the KCNQ3 channel COOH terminus in the presence of SGK-1 did not affect the K(+) current amplitude of KCNQ2/3/5-mediated currents. Coexpression of Nedd4-2 and SGK-1 with KCNQ2/3 or KCNQ3/5 channels did not significantly alter K(+) current amplitudes. Only the Nedd4-2 mutant (S448A)Nedd4-2 exhibited a significant downregulation of the KCNQ2/3/5 K(+) current amplitudes. Taken together, these results demonstrate a potential mechanism for regulation of KCNQ2/3 and KCNQ3/5 channels by SGK-1 regulation of the activity of the ubiquitin ligase Nedd4-2.  相似文献   

11.
Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging.  相似文献   

12.
13.
Inducible heat shock protein70 (HSP70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Apoptosis signal-regulating kinase (ASK) 1, a mammalian MAPKKK, activates the JNK and p38 pathways. Here we report a novel function of HSP70 in regulating TNF-α-induced cell apoptosis. Our study demonstrated that HSP70 physically interacted with ASK1 and promoted the ubiquitin-dependent proteasomal degradation of ASK1. CHIP (carboxyl terminus of the HSC70-interacting protein) which acted as a co-chaperone of HSP70 cooperated with HSP70 in regulating ASK1. We also found that TNF-α stimulated HSP70/CHIP/ASK1 association and through cooperating with CHIP, HSP70 inhibits TNF-α-induced cell apoptosis both in over-expression and RNAi conditions. Structural analysis indicated that C-terminal domain of HSP70 was necessary for ASK1 degradation, and N- terminal domain of ASK1 was essential for its binding to HSP70. All these findings indicated that HSP70 and CHIP association is important for HSP70 in interacting with ASK1. Through forming the complex of HSP70/CHIP/ASK1, HSP70 promotes ASK1 proteasomal degradation and prevents TNF-α-induced cell apoptosis.  相似文献   

14.
15.
The C-terminus of Hsp70 interacting protein (CHIP) is being considered to be a cellular quality control E3 ubiquitin ligase because of its ability to degrade misfolded proteins in association with heat shock chaperones. The neuroprotective role of CHIP also has been implicated in several familial neurodegenerative diseases including polyglutamine diseases. However, the regulation of the expression of CHIP under different stress conditions and its protective role thereon is unknown. Here we have shown that the mRNA level of CHIP is significantly increased in the cells exposed to oxidative, endoplasmic reticulum and proteasomal stress. CHIP also protected from various stress-induced cell death. Finally, we have demonstrated upregulation of CHIP mRNA levels in the expanded polyglutamine protein expressing cells. Our result suggests that the upregulation of CHIP under various stress environments is an adaptive response of the cells to deal with the excess burden of misfolded protein.  相似文献   

16.
17.
Ribosomal protein S6 kinase plays a critical role in the regulation of cell growth and energy metabolism. S6K belongs to the AGC family of serine/threonine kinases and is a downstream effector of the mTOR and PI3K signalling pathways. The activity and subcellular localisation of S6K are tightly controlled by phosphorylation/dephosphorylation events. We have recently demonstrated that steady-state levels of S6K isoforms, S6K1 and S6K2, are regulated by ubiquitination-mediated proteasomal degradation. In this study, we report for the first time that the ubiquitination status of S6K isoforms is coordinated by signalling pathways induced by mitogenic stimuli and extracellular stresses. The induction of signal transduction by serum and growth factors significantly increases the level of S6K ubiquitination, while the treatment of cells with UV and staurosporine has the opposite effect. Furthermore, we found that the phosphorylation/activation of S6Ks does not correlate directly with the induction of their ubiquitination in response to diverse cellular stimuli. This study suggests that the ubiquitination and subsequent proteasomal degradation of S6K are controlled by signalling pathways, which could possibly facilitate their association with the components of the ubiquitination machinery.  相似文献   

18.
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.  相似文献   

19.
p53 regulates several biological processes, including senescence. Its protein stability is regulated by ubiquitination and proteasomal degradation, mainly mediated by Mdm2. However, other E3 ligases have been identified, such as the chaperone-associated ligase CHIP, although their precise function regarding p53 degradation remains elusive. Interestingly, CHIP deficiency has been recently shown to result in accelerated aging in mice, although the molecular basis of this phenotype was not completely understood. In this study, we explore the role of CHIP in regulating p53 in senescence. We demonstrate that in senescent human fibroblasts, CHIP is up-regulated concomitant with a significant down-regulation of p53. Moreover, CHIP partially translocates to the nucleus and acquires higher ubiquitination levels in senescent cells. Notably, CHIP overexpression in young cells, to levels similar to those recorded during senescence, leads to p53 degradation to below its basal levels. In addition, whereas CHIP silencing has no effect on p53 stability in young cells, a considerable p53 accumulation occurs in their senescent counterparts. Finally, we have observed an attenuation of the CHIP-associated molecular folding-refolding machinery during senescence, and supportively, inhibition of Hsp90 activity leads to rapid p53 degradation only in senescent cells. Taking these results together, we conclude that CHIP-dependent p53 regulation occurs specifically during senescence.  相似文献   

20.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号