首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
作为现代生物产业的核心,生物制造涵盖了从生物资源到生物技术,再到生物产业的价值链,集中体现了现代生物技术在医药、农业、能源、材料、化工、环保等多个工业领域的应用,对经济社会可持续发展进程有重要推动作用。当前,生物制造已成为世界主要发达经济体科技产业布局的重点领域之一,吸引了大量公共投资和社会资本,形成了价值数十亿美元级别的投资风口。调研统计2018~2019年全球150家生物制造相关企业201次融资事件,梳理生物制造产业的国内外发展环境和融资现状,为我国生物制造产业发展提出建议,以期引导领域科技成果转移转化、技术资本对接和行业繁荣发展,为我国经济社会可持续发展做出贡献。  相似文献   

2.
褚鑫  王力为  许虹  张燕飞 《生物工程学报》2022,38(11):4019-4026
随着石化资源逐步消耗,气候问题日益凸显,工业生物技术被认为是解决能源和资源供给、应对气候变化、实现绿色可持续发展的重要方向。得益于理论突破、技术变革和学科交叉,工业生物技术主要经历了由生命科学突破性成就、多学科技术理念交汇融合和产业应用导向推动的3个阶段。本文回顾总结了工业生物技术的发展历程及近年来取得的重要突破,并展望了其未来发展方向。  相似文献   

3.
Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.  相似文献   

4.
蔡真  李寅 《生物工程学报》2011,27(7):971-975
以生物催化和生物转化为核心的工业生物技术是实现社会和经济可持续发展的有效手段。本期专刊分别从基因工程、代谢工程与合成生物学、生理工程、发酵工程与生化工程、生物催化与生物转化、生物技术与方法等方面,介绍了我国在工业生物技术领域的最新研究进展。  相似文献   

5.
生物经济是指通过可持续的方式,利用可再生自然资源来生产食品、能源、生物技术产品和服务的一切经济活动的总和。生物经济是继农业经济、工业经济、信息经济之后,人类经济社会发展的第四次浪潮。概述全球生物经济发展现状,梳理世界主要经济体生物经济战略布局,归纳生物经济未来发展的四个主要方向,通过调研统计分析生物制药、生物基材料和化学品、生物农业和未来食品三个生物产业重点领域的投融资数据,预判未来生物产业投融资前景,并针对我国生物产业投融资提出建议。  相似文献   

6.

This paper presents quantified estimates of the prospective impacts on the UK economy over 2000-05 of the development of biotechnology. The study has proceeded by identifying the key effects that we expect biotechnology to have, determining on the basis of logic and economic theory the qualitative character of the expected economic consequences, constructing scenarios within the Cambridge Multisectoral Dynamic Model of the UK economy to represent these effects and examining and interpreting the consequences revealed by the model's results. Biotechnology is still at such an early stage that attention is mainly focussed on the impact of biotechnology production, rather than diffusion. The industrial application of biotechnology in relation to the overall economy is likely to remain modest through to 2005, but will probably be greater in the longer term as the producing sectors grow in importance and as the technology becomes more pervasive.  相似文献   

7.
Several predominantly political movements advocate white, or industrial, biotechnology as a means to alleviate economic, ecological and societal problems in petroleum-dependent industrialized nations worldwide. US and European approaches differ significantly and we believe that, in the long-term, only economic drivers will be able to bring about the broad use of renewable resources and a bio-based economy. As long as the cost of fossil fuel and feedstock for key chemicals have not passed their respective critical thresholds, industrial biotechnology and its products will need political support and funding, particularly in the energy and bulk-chemicals sectors. Other uses of industrial biotechnology, however, such as biocatalytic conversions of fine and specialty chemicals and the manufacture of high-value products, such as nutriceuticals, cosmeceuticals and performance chemicals offer dynamic growth opportunities both for established chemical industries, as well as emerging entrepreneurial enterprises.  相似文献   

8.
Thailand is very much aware of the potential and the opportunities in biotechnology and has given the utmost effort into the development of biotechnology. In 1983, the government has set up the National Center for Genetic Engineering and Biotechnology (NCGEB). The center operates through a network of research institutes and laboratories in order to maximize and consolidate the limited resources of the country. The center also plays a key role in formulating policies and plans relating to biotechnology as well as in supporting and coordinating biotechnology research and development. A sum of U.S. $8.6 million has been allocated for an initial 5-year program for R D & E activities. The priority consideration is on utilizing various levels of biotechnology for improvement in agriculture, industrial productivity, health, and environment. To facilitate and strengthen the link between research institutions and the private sector, the high-level Science and Technology Development Board (STDB) was established in 1986, with an initial allocation of U.S. $2.9 million between 1986 to 1992 for biotechnology. At present, there are between 400 to 500 scientists and technologists with M.S. or higher degrees actively working in research and development (R & D) in biotechnology and engineering, mostly in universities and government research laboratories. It is expected that approximately 500 graduates with advanced degrees in biotechnology and related fields will be produced during the 5-year plan (1987 to 1991).  相似文献   

9.
Yield increase: the contribution of plant biotechnology Modern plant breeding is facing increasing challenges to meet future needs caused by global climate changes, decreasing reserves of fossil fuels, an increasing world population as well as an aging society. Therefore, besides input traits, breeding aims focus on renewable resources and to ensure production of sufficient high quality food and feed. In particular, the world‐wide rising in energy demand harbors the risk that more and more agricultural land will be used for industrial purposes instead for food production. Therefore, breeding of highly productive crop plants for the production of valuable biological materials is of great importance. To optimize the production of valuable compounds a profound molecular and biochemical knowledge of the underlying metabolic pathways and the availability of technologies for the transfer of these findings into crop plants are needed. Plant biotechnology can be a key technology being important for deciphering molecular relationships as well as being required for the implementation of these findings into breeding programs.  相似文献   

10.
Biotechnology is one of the fastest growing, knowledge-driven industries in India and is expected to play a key role in shaping India’s rapidly developing economy. Since its inception in 1986 the Department of Biotechnology (DBT) has been guiding to foster growth of Indian biotechnology with a range of initiatives. Indian biotechnology industry registered over 3.0 billion USD revenue generation in 2009–10, which constitutes about 2 % share of the global biotechnology market. More than 300 companies are engaged in different biotechnology sectors in India, majority of which are clustered in western and southern regions. Biopharmaceuticals is the largest biotechnology sector in India with about 62 % market share. Bioservices ranked second due to the upward trend in a range of service oriented research activities. Bioagriculture recorded highest growth in 2009–10 and is dominated by insect resistant transgenic cotton. Bioindustrial, which deals with production of enzymes for different industrial uses, is the smallest biotechnology sector in India with 6 % revenue share.  相似文献   

11.
Industrial biotechnology is a rapidly growing field. With the increasing shift towards a bio-based economy, there is rising demand for developing efficient cell factories that can produce fuels, chemicals, pharmaceuticals, materials, nutraceuticals, and even food ingredients. The yeast Saccharomyces cerevisiae is extremely well suited for this objective. As one of the most intensely studied eukaryotic model organisms, a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance can be capitalized upon to enable a substantial increase in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given.  相似文献   

12.
生物医药产业是各大经济体在21世纪优先发展的战略性产业,并逐步成为世界经济的主导产业。我国制定了一系列鼓励政策加快推动生物医药创新发展,为我国生物医药创新打造了良好的大环境。在大众创业、万众创新的大背景下,各地相应建设生物技术科技园和孵化器,促进生物技术企业创新。通过阐述生物产业最为发达的国家——美国不同类型的生物技术孵化器的建设、运营、孵化成功案例等,分析了孵化器内部运营与外部协作的生态关系,总结了孵化器孵化成功的经验,针对我国生物技术孵化器的建立和运营提出了建议。  相似文献   

13.
Bioeconomy is an emerging paradigm under which the creation, development, and revitalization of economic systems based on a sustainable use of renewable biological resources in a balanced way is rapidly spreading globally. Bioeconomy is building bridges between biotechnology and economy as well as between science, industry, and society. Biotechnology, from its ancient origins up to the present is at the core of the scientific and innovative foundation of bioeconomy policies developed in numerous countries. The challenges and perspectives of bioeconomies are immense, from resource‐efficient large‐scale manufacturing of products such as chemicals, materials, food, pharmaceuticals, polymers, flavors, and fragrances to the production of new biomaterials and bioenergy in a sustainable and economic way for a growing world population. Key success factors for different countries working on the bioeconomy vary widely from high‐tech bioeconomies, emerging diversified or diversified bioeconomies to advanced and basic primary sector bioeconomies. Despite the large variety of bioeconomies, several common elements are identified, which are simultaneously needed altogether.  相似文献   

14.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

15.
Since their discovery many decades ago, Pseudomonas putida and related subspecies have been intensively studied with regard to their potential application in industrial biotechnology. Today, these Gram-negative soil bacteria, traditionally known as well-performing xenobiotic degraders, are becoming efficient cell factories for various products of industrial relevance including a full range of unnatural chemicals. This development is strongly driven by systems biotechnology, integrating systems metabolic engineering approaches with novel concepts from bioprocess engineering, including novel reactor designs and renewable feedstocks.  相似文献   

16.
Tailor‐made microorganisms Microbial diversity provides unlimited resources for the development of novel industrial processes and products. Since the beginning of the 20th century microorganisms have been successfully applied for the large scale production of bio‐based products. In recent years, modern methods of strain development and Synthetic Biology have enabled biotech engineers to design even more sophisticated and tailor‐made microorganisms. These microbes serve industrial processes for the production of bulk chemicals, enzymes, polymers, biofuels as well as plant‐derived ingredients such as Artemisinin in an ecologically and economically sustainable and attractive fashion. In the future, production of advanced biofuels, microbial fuel cells, CO2 as feedstock and microbial cellulose are research topics as well as challenges of global importance. Continuous efforts in microbiology and biotechnology research will be pivotal for white biotechnology to gain more momentum in transforming the chemical industry towards a knowledge based bio‐economy.  相似文献   

17.
The progression towards greater industrial sustainability involves the analysis of biotechnology as a means of achieving clean or cleaner products and processes. Because living systems manage their chemistry more efficiently than man-made factories, and their wastes tend to be recyclable and biodegradable, they can be expected to be more environmentally clean. Industry has begun to use enzymes instead of traditional catalysts in many industrial production processes. The future holds obstacles as well as opportunities for biotechnological applications. A greater ability to manipulate biological materials and processes will have significant impact on manufacturing industries. A growing proportion of biotechnologyderived processes and products is based on the use of genetically modified microorganisms. This extends the analysis from the aspect of cleanliness to the aspect of safety.  相似文献   

18.
There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.  相似文献   

19.
DNA合成是生命科学领域的共性支撑技术和合成生物学的关键使能技术。以合成生物学为基础的工业生物技术持续快速发展,迫切需要更加便捷、经济、安全的DNA来源以满足其日益增长的大规模DNA合成需求。工业化DNA合成在通量、成本、速度等方面的优势日益凸显,有力推动了工业生物技术研发效率的提升和研发成本的下降。但是现有技术在生产过程中还存在着使用大量有机试剂、资源浪费等问题。随着DNA合成规模的持续快速提升,有毒化学品危害、成本负担、环境负担等问题日益突出。本文结合我们的工作实践,对工业生物技术中DNA合成需求、合成策略以及可持续发展面临的问题和解决方案研究进展进行探讨。  相似文献   

20.
Research in plant biotechnology is playing a crucial role in the production and conservation of plant-based resources globally. Being a country with rich and diverse floral resources, South Africa has a genuine opportunity to develop efficient and competitive plant biotechnology sectors. South Africa has a policy framework, in the form of a National Biotechnology Strategy that supports biotechnology research. The presence of competitive research infrastructure coupled with the government's willingness to commit significant resources will certainly help realise this. South Africa's plant biotechnology research has potential to make more significant contributions to the national economy. In this review, whilst highlighting the success, the research endeavours, prospects and challenges hindering the practical application of micropropagation research outputs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号