首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Objective: The objective was to determine whether knee osteoarthritis (OA) reduces exercise ambulatory capacity and impairs quality of life (QOL) in obese individuals. Research Methods and Procedures: There were 56 subjects, with and without knee OA, who were obese. The subjects were evaluated with anthropometric measurements, a body composition assessment, maximal cardiopulmonary exercise test, 6‐minute walk test (6‐MWT), perceived exertion (RPE), self‐reported disability [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)], and the Medical Outcomes Study Short Form 36 (SF‐36). Results: VO2peak was significantly higher in the controls when compared with the patients (mean ± standard deviation, 1.584 ± 0.23 L/kg per min vs. 0.986 ± 0.20 L/kg per min; p < 0.001). Obese subjects without knee OA walked a significantly longer distance in the 6‐MWT than obese patients with knee OA (p < 0.001). We also observed significant negative correlation between Vo 2max and RPE, WOMAC pain and physical limitation, and bodily pain and general health domains of short‐form 36. Discussion: Knee OA reduces exercise and ambulatory capacity and impairs QOL in obese individuals. RPE, WOMAC pain, and SF‐36 items might provide information about exercise capacity in the obese subjects with knee OA. Our study confirms that exercise capacity and QOL might be improved by energetic and intensive treatment of pain resulting from knee OA.  相似文献   

2.
Objective: The effect of weight loss on obesity‐associated endothelial dysfunction is not clear because of conflicting data, demonstrating both improvement and no change in endothelial function after weight loss in obese subjects. A 2‐year prospective study (n = 121) was conducted to examine: (1) the effect of obesity and weight loss (either a low‐carbohydrate or and low‐fat diet) on flow mediated vasodilatation (FMD), a measure of endothelial function. Design and Methods: Participants reduced body weight by 7.1% ± 4.4%, 8.7% ± 6.8%, 7.1% ± 7.8%, and 4.1% ± 7.7% at 3, 6, 12, and 24 months, respectively with no significant differences between the low‐fat and low‐carbohydrate groups. Results: Endothelial function was inversely correlated with waist circumference, triglyceride level, and directly correlated with leptin in obese persons prior to weight loss. These weight losses did not confer any improvements in FMD. There were no differences between the low‐fat and low‐carbohydrate diets in FMD at any time point. At 6 months (r = 0.26, P = 0.04) and 1 year (r =0.28, P = 0.03), there were positive correlations between change in FMD and change in leptin but not at 2 years. Conclusion: There was no significant improvement in endothelial function after 7.1% ± 7.8% weight loss at 1 year and 4.1% ± 7.7% at 2 years, achieved by either a low carbohydrate or a low fat diet.  相似文献   

3.
Objective: To test the hypothesis that the greater β‐adrenoceptor (β‐AR)‐stimulated lipolysis and sensitivity (half‐maximal lipolytic response) in abdominal (ABD) adipocytes, greater gluteal (GLT) adipose tissue‐lipoprotein lipase (AT‐LPL) activity, and dyslipidemia associated with obesity in older women are modifiable by weight loss (WL) and are not due to menopause or aging. Research Methods and Procedures: The metabolic effects of 6 months of hypocaloric diet and low‐intensity walking WL program on the regional regulation of in vitro lipolysis and AT‐LPL activity in subcutaneous ABD and GLT adipocytes were measured in 34 obese (48.7 ± 0.7% body fat, mean ± SE) postmenopausal (59 ± 1 years) white women. Results: The lipolytic responsiveness to the β‐AR agonist isoproterenol and basal lipolysis in the presence of 1 U/mL adenosine deaminase‐uninhibited (lipolysis) were greater (p < 0.01) in ABD than GLT adipocytes before and after WL, but there were no regional differences in postreceptor (dibutyryl 3′, 5′‐cyclic adenosine monophosphate)‐stimulated lipolysis. β‐AR sensitivity was greater in ABD than GLT adipocytes before (p < 0.01) but not after WL. Regional AT‐LPL did not change after WL, but the change in the activity of ABD (but not GLT) AT‐LPL correlated with the baseline adenosine deaminase‐uninhibited lipolysis (r = 0.38, p = 0.03). There were no relationships between the declines in plasma triglyceride or increases in high‐density lipoprotein cholesterol associated with WL and the changes in regional fat cell metabolism. Discussion: Thus, despite improving lipoprotein lipid profiles in obese, postmenopausal women, WL does not affect the regulation of regional fat metabolism, and a greater tonic inhibition of basal lipolysis by endogenous adenosine may increase the activity of AT‐LPL after WL and predispose older women to develop ABD adiposity.  相似文献   

4.
5.
Objective: To determine the effects of weight loss (WL) alone and combined with aerobic exercise on visceral adipose tissue (VAT), intramuscular fat, insulin‐stimulated glucose uptake, and the rate of decline in free fatty acid (FFA) concentrations during hyperinsulinemia. Research Methods and Procedures: We studied 33 sedentary, obese (BMI = 32 ± 1 kg/m2) postmenopausal women who completed a 6‐month (three times per week) program of either WL alone (n = 16) or WL + aerobic exercise (AEX) (n = 17). Glucose utilization (M) was measured during a 3‐hour hyperinsulinemic‐euglycemic clamp (40 mU/m2 per minute). M/I, the amount of glucose metabolized per unit of plasma insulin (I), was used as an index of insulin sensitivity. Results: Body weight, total fat mass, and percentage fat decreased similarly in both groups (p < 0.01). VAT, subcutaneous abdominal adipose tissue, mid‐thigh subcutaneous fat, and intramuscular fat decreased to a similar extent in both groups and between 14% and 27% after WL and WL+AEX (p < 0.05). WL alone did not change M or M/I; however, M and M/I increased 15% and 21% after WL+AEX (p < 0.05). Fasting concentrations and rate of decline of FFA did not change in either group. In stepwise regression models to determine the independent predictors of changes in M and M/I, the change in VAT was the single independent predictor of M (r2 = 0.30) and M/I (r2 = 0.33). Discussion: Intramuscular fat decreases similarly with 6 months of moderate WL alone or with aerobic exercise in postmenopausal women. In contrast, only WL combined with exercise results in increased glucose utilization and insulin sensitivity. These findings should be validated in a larger population.  相似文献   

6.
Objective: Leptin concentrations increase with obesity and tend to decrease with weight loss. However, there is large variation in the response of serum leptin levels to decreases in body weight. This study examines which endocrine and body composition factors are related to changes in leptin concentrations following weight loss in obese, postmenopausal women. Research Methods and Procedures: Body composition (DXA), visceral obesity (computed tomography), leptin, cortisol, insulin, and sex hormone‐binding globulin (SHBG) concentrations were measured in 54 obese (body mass index [BMI] = 32.0 ± 4.5 kg/m2; mean ± SD), women (60 ± 6 years) before and after a 6‐month hypocaloric diet (250 to 350 kcal/day deficit). Results: Body weight decreased by 5.8 ± 3.4 kg (7.1%) and leptin levels decreased by 6.6 ± 11.9 ng/mL (14.5%) after the 6‐month treatment. Insulin levels decreased 10% (p < 0.05), but mean SHBG and cortisol levels did not change significantly. Relative changes in leptin with weight loss correlated positively with relative changes in body weight (r = 0.50, p < 0.0001), fat mass (r = 0.38, p < 0.01), subcutaneous fat area (r = 0.52, p < 0.0001), and with baseline values of SHBG (r = 0.38, p < 0.01) and baseline intra‐abdominal fat area (r = ?0.27, p < 0.06). Stepwise multiple regression analysis showed that baseline SHBG levels (r2 = 0.24, p < 0.01), relative changes in body weight (cumulative r2 = 0.40, p < 0.05), and baseline intra‐abdominal fat area (cumulative r2 = 0.48, p < 0.05) were the only independent predictors of the relative change in leptin, accounting for 48% of the variance. Discussion: These results suggest that obese, postmenopausal women with a lower initial SHBG and more visceral obesity have a greater decrease in leptin with weight loss, independent of the amount of weight lost.  相似文献   

7.
Dietary restriction and increased physical activity are recommended for obesity treatment. Very low carbohydrate diets are used to promote weight loss, but their effects on physical function and exercise tolerance in overweight and obese individuals are largely unknown. The aim of this study was to compare the effects of a very low carbohydrate, high fat (LC) diet with a conventional high carbohydrate, low fat (HC) diet on aerobic capacity, fuel utilization during submaximal exercise, perceived exercise effort (RPE) and muscle strength. Sixty subjects (age: 49.2 ± 1.2 years; BMI: 33.6 ± 0.5 kg/m2) were randomly assigned to an energy restricted (~6–7 MJ, 30% deficit), planned isocaloric LC or HC for 8 weeks. At baseline and week 8, subjects performed incremental treadmill exercise to exhaustion and handgrip and isometric knee extensor strength were assessed. Weight loss was greater in LC compared with HC (8.4 ± 0.4% and 6.7 ± 0.5%, respectively; P = 0.01 time × diet). Peak oxygen uptake and heart rate were unchanged in both groups (P > 0.17). Fat oxidation increased during submaximal exercise in LC but not HC (P < 0.001 time × diet effect). On both diets, perception of effort during submaximal exercise and handgrip strength decreased (P ≤ 0.03 for time), but knee extensor strength remained unchanged (P > 0.25). An LC weight loss diet shifted fuel utilization toward greater fat oxidation during exercise, but had no detrimental effect on maximal or submaximal markers of aerobic exercise performance or muscle strength compared with an HC diet. Further studies are required to determine the interaction of LC diets with regular exercise training and the long‐term health effects.  相似文献   

8.
Objective : This study was designed to determine if serum leptin concentrations (adjusted for fat mass) after weight loss on a low-calorie diet predict subsequent weight gain. Research Methods and Procedures : Body composition and serum leptin concentrations were determined on 14 moderately obese, postmenopausal, nondiabetic women with a familial predisposition to obesity. Assessments were obtained under tightly controlled metabolic ward conditions of macronutrient intake and weight maintenance both before (obese state) and after a mean weight loss of 12.0 kg to normal body weight (postobese state). Four years later, without intervention, body weight and body composition were reassessed. Results : Weight loss resulted in significant decreases in fat mass (29.7 ± 5.4 vs. 20.3 ± 4.7; kg), body mass index (27.7 ± 1.6 vs. 23.0 ± 1.5; kg/m2), percent body fat (40.7 ± 4.3 vs. 33.1 ± 5.0), and serum leptin concentrations (31.8 ± 16.0 vs. 11.5 ± 5.4; ng/mL). Serum leptin concentrations were positively correlated (p<<0.05) with fat mass in both the obese and postobese states (r = 0.67 and r = 0.56, respectively). However, residual serum leptin concentrations (adjusted for fat mass) in the obese and postobese states were not related to changes in body weight (p<= 0.61 and 0.52), fat mass (p = 0.72 and 0.42), body mass index (p = 0.59 and 0.33), or percent body fat (p = 0.84 and 0.46) over the follow-up period. Discussion : These finding do not support the hypothesis that relatively low concentrations of leptin predict weight regain after weight loss. However, because the number of subjects in this study was limited, further studies are warranted.  相似文献   

9.
Increased circulating adiponectin and insulin sensitivity are usually observed after body fat loss induced by a weight‐loss diet. Progressive resistance training (PRT) without a concomitant weight‐loss diet significantly decreases visceral fat, thus improving insulin sensitivity. Therefore, the purpose of this study was to ascertain the effects of combined 16‐week PRT and weight‐loss diet on circulating adiponectin and insulin sensitivity index. Thirty‐four obese (BMI: 30–40 kg/m2) women, aged 40–60 year, were randomized to three groups: a control group (C; n = 9); a diet group (WL; n = 12) with a caloric restriction of 500 kcal/d; and a diet plus resistance training group (WL+RT; n = 13) with the same caloric restriction as group WL and a 16‐week supervised whole body PRT of two sessions/week. Both WL and WL+RT groups showed similar decreases in body mass (?6.3% and ?7.7%) and visceral fat (?19.9% and ?20.5%). WL resulted in an expected increase in circulating levels of adiponectin (P = 0.07) and insulin sensitivity. However, circulating total adiponectin decreased (P < 0.05) in WL+RT group, whereas an improvement in different cardiovascular risk factors (insulin sensitivity, low‐density lipoprotein cholesterol (LDL‐C), etc.) was observed. In conclusion, in obese women a 16‐week combined PRT and weight‐loss diet is accompanied by significant improvements in different cardiovascular risk factors in spite of a significant decrease of circulating adiponectin.  相似文献   

10.
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS‐69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS‐69 genotype were measured in 115 normal‐weight (BMI <25 kg/m2) and 138 obese (BMI ≥30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI ≥35kg/m2) compared with the normal‐weight group (P = 0.029). Obese subjects with the insertion allele had greater fat mass (42.3 ± 0.9 vs. 38.9 ± 0.9 kg, P = 0.034) and fat‐free soft tissue mass (47.4 ± 0.6 vs. 45.1 ± 0.6 kg, P = 0.014), and more abdominal subcutaneous adipose tissue (SAT, 595 ± 17 vs. 531 ± 17 cm2, P = 0.025) but not visceral fat (P = 0.739), than obese homozygotes for the wild‐type allele. Only SAT was greater in normal‐weight subjects with the insertion allele (P = 0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild‐type allele in the normal‐weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat‐free soft tissue mass and fat mass, particularly SAT, in obese black South African women.  相似文献   

11.
Young adults (YA) are underrepresented in behavioral weight loss programs and achieve poorer outcomes than older adults (OA). There has been a call to develop programs specifically targeting this age group. This study examined the performance of YA enrolled in a low‐intensity, team‐based weight loss campaign and compared their outcomes to OA to determine the utility of such an approach for weight loss in this population. Shape Up Rhode Island (SURI) 2009 was a 12‐week online team‐based weight loss and exercise competition (N = 6,795, 81% female, 94% white, age = 44.7 ± 11.2, BMI = 29.4 ± 5.9). YA was defined as 18–35 years and OA as >35 years; YA and OA were compared on enrollment, retention, weight loss, and change in steps. A total of 1,562 YA enrolled and 715 completed the program. Fewer YA completed compared with OA (46 vs. 62%, P < 0.001). However, among completers, YA achieved greater percent weight loss (‐4.5 ± 4.0 vs. ?3.8 ± 3.2%) and greater daily step change (+1,578.2 ± 3,877.2 vs. +1,342.2 ± 3,645.7) than OA (P's < 0.001). Further, more YA completers achieved a ≥5% weight loss (40 vs. 29%, P < 0.001). Findings were consistent in the overweight/obese (OW/OB) subsample, and using ≤25 years of age as the cut off for YA. Weight losses among YA in this low‐intensity weight loss campaign were quite promising, with over 700 YA completing the program and on average achieving a 4.5% weight loss. Indeed, the potential public health impact of such an approach is substantial; future efforts to develop programs for this age group may benefit from using a low‐intensity, team‐based approach.  相似文献   

12.
Objective: The long‐term effect of dietary protein on bone mineralization is not well understood. Research Methods and Procedures: Sixty‐five overweight (body mass index, 25 to 29.9 kg/m2) or obese (≥30 kg/m2) subjects were enrolled in a randomized, placebo‐controlled, 6‐month dietary‐intervention study comparing two controlled ad libitum diets with matched fat contents: high protein (HP) or low protein (LP). Body composition was assessed by DXA. Results: In the HP group, dietary‐protein intake increased from 91.4 g/d to a 6‐month intervention mean of 107.8 g/d (p < 0.05) and decreased in the LP group from 91.1 g/d to 70.4 g/d (p < 0.05). Total weight loss after 6 months was 8.9 kg in the HP group, 5.1 kg in the LP group, and none in the control group. After 6 months, bone mineral content (BMC) had declined by 111 ± 13 g (4%) in the HP group and by 85 ± 13 g (3%) in the LP group (not significant). Loss of BMC was more positively correlated with loss of body fat mass (r = 0.83; p < 0.0001) than with loss of body weight. Six‐month BMC loss, adjusted for differences in fat loss, was greater in the LP group than in the HP group [difference in LP vs. HP, 44.8 g (95% confidence interval, 16 to 73.8 g); p < 0.05]. Independent of change in body weight and composition during the intervention, highprotein intake was associated with a diminished loss of BMC (p < 0.01). Discussion: Body‐fat loss was the major determinant of loss of BMC, and we found no adverse effects of 6 months of high‐protein intake on BMC.  相似文献   

13.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

14.
Our objective was to examine whether elevated α‐lactalbumin (αlac) protein intake compared to elevated supra sustained milk protein (SSP) and sustained milk protein (SP) intake results into a difference in body weight and body composition over a 6‐month energy‐restriction intervention. Body weight, body composition, resting energy expenditure (REE), satiety and blood‐ and urine‐parameters of 87 subjects (BMI 31 ± 5 kg/m2 and fat percentage 40 ± 8%) were assessed before and after daily energy intakes of 100, 33, and 67% for 1, 1, and 2 months respectively (periods 1, 2, and 3), with protein intake from meal replacements and 2 months of 67% with ad libitum protein intake additional to the meal replacements (period 4). The diets resulted in 0.8 ± 0.3 g/kg body mass (BM) for SP and significant higher protein intake (24‐h nitrogen) of 1.2 ± 0.3 and 1.0 ± 0.3 g/kgBM for SSP and αlac (P < 0.05). Body weight and fat percentage was decreased in all groups after 6 months (SP ?7 ± 5 kg and ?5 ± 3%; SSP ?6 ± 3 kg and ?5 ± 3%; αlac ?6 ± 4 kg and ?4 ± 4%, P < 0.001; there was no significant group by time difference). Furthermore, sparing of fat‐free mass (FFM) and preservation of REE in function of FFM during weight loss was not significantly different between the αlac‐group and the SSP‐ and SP‐groups. In conclusion, the efficacy of αlac in reduction of body weight and fat mass (FM), and preservation of FFM does not differ from the efficacy of similar daily intakes of milk protein during 6 months of energy restriction.  相似文献   

15.
Objective: The objective of this study was to evaluate the effect of a 32‐week personalized Polar weight management program (PWMP) compared with standard care (SC) on body weight, body composition, waist circumference, and cardiorespiratory fitness in overweight or obese adults. Research Methods and Procedures: Overweight or obese (29 ± 2 kg/m2) men and women (n = 74) 38 ± 5 years of age were randomly assigned into either PWMP (men = 20, women = 21) or SC (men = 15, women = 18). Both groups managed their own diet and exercise program after receiving the same standardized nutrition and physical activity advice. PWMP also received a weight management system with literature to enable the design of a personalized diet and exercise weight loss program. Body weight and body composition, waist circumference, and cardiorespiratory fitness were measured at weeks 0, 16, and 32. Results: Eighty percent of participants completed the 32‐week intervention, with a greater proportion of the dropouts being women (PWMP: 2 men vs. 7 women; SC: 2 men vs. 4 women). At 32 weeks, PWMP completers had significantly (p < 0.001) greater losses in body weight [6.2 ± 3.4 vs. 2.6 ± 3.6 (standard deviation) kg], fat mass (5.9 ± 3.4 vs. 2.2 ± 3.6 kg), and waist circumference (4.4 ± 4.5 vs. 1.0 ± 3.6 cm). Weight loss and fat loss were explained by the exercise energy expenditure completed and not by weekly exercise duration. Discussion: More effective weight loss was achieved after treatment with the PWMP compared with SC. The results suggest that the PWMP enables effective weight loss through tools that support self‐monitoring without the requirement of more costly approaches to program supervision.  相似文献   

16.
Objectives : To determine the effects of equivalent diet‐ or exercise‐induced weight loss and exercise without weight loss on subcutaneous fat, visceral fat, and insulin sensitivity in obese women. Research Methods and Procedures : Fifty‐four premenopausal women with abdominal obesity [waist circumference 110.1 ± 5.8 cm (mean ± SD)] (BMI 31.3 ± 2.0 kg/m2) were randomly assigned to one of four groups: diet weight loss (n = 15), exercise weight loss (n = 17), exercise without weight loss (n = 12), and a weight‐stable control group (n = 10). All groups underwent a 14‐week intervention. Results : Body weight decreased by ~6.5% within both weight loss groups and was unchanged in the exercise without weight loss and control groups. In comparison with controls, cardiorespiratory fitness improved within the exercise groups only (p < 0.01). Reduction in total, abdominal, and abdominal subcutaneous fat within the exercise weight loss group was greater (p < 0.001) than within all other groups. The reduction in total and abdominal fat within the diet weight loss and exercise without weight loss groups was greater than within controls (p < 0.001) but not different from each other (p > 0.05). Visceral fat decreased within all treatment groups (p < 0.008), and these changes were not different from each other. In comparison with the control group, insulin sensitivity improved within the exercise weight loss group alone (p < 0.001). Discussion : Daily exercise without caloric restriction was associated with substantial reductions in total fat, abdominal fat, visceral fat, and insulin resistance in women. Exercise without weight loss was also associated with a substantial reduction in total and abdominal obesity.  相似文献   

17.
The rise in obesity‐related morbidity in children and adolescents requires urgent prevention and treatment strategies. Currently, only limited data are available on the effects of exercise programs on insulin resistance, and visceral, hepatic, and intramyocellular fat accumulation. We hypothesized that a 12‐week controlled aerobic exercise program without weight loss reduces visceral, hepatic, and intramyocellular fat content and decreases insulin resistance in sedentary Hispanic adolescents. Twenty‐nine postpubertal (Tanner stage IV and V), Hispanic adolescents, 15 obese (7 boys, 8 girls; 15.6 ± 0.4 years; 33.7 ± 1.1 kg/m2; 38.3 ± 1.5% body fat) and 14 lean (10 boys, 4 girls; 15.1 ± 0.3 years; 20.6 ± 0.8 kg/m2; 18.9 ± 1.5% body fat), completed a 12‐week aerobic exercise program (4 × 30 min/week at ≥70% of peak oxygen consumption (VO2peak)). Measurements of cardiovascular fitness, visceral, hepatic, and intramyocellular fat content (magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS)), and insulin resistance were obtained at baseline and postexercise. In both groups, fitness increased (obese: 13 ± 2%, lean: 16 ± 4%; both P < 0.01). In obese participants, intramyocellular fat remained unchanged, whereas hepatic fat content decreased from 8.9 ± 3.2 to 5.6 ± 1.8%; P < 0.05 and visceral fat content from 54.7 ± 6.0 to 49.6 ± 5.5 cm2; P < 0.05. Insulin resistance decreased indicated by decreased fasting insulin (21.8 ± 2.7 to 18.2 ± 2.4 µU/ml; P < 0.01) and homeostasis model assessment of insulin resistance (HOMAIR) (4.9 ± 0.7 to 4.1 ± 0.6; P < 0.01). The decrease in visceral fat correlated with the decrease in fasting insulin (R2 = 0.40; P < 0.05). No significant changes were observed in any parameter in lean participants except a small increase in lean body mass (LBM). Thus, a controlled aerobic exercise program, without weight loss, reduced hepatic and visceral fat accumulation, and decreased insulin resistance in obese adolescents.  相似文献   

18.
Objective: To assess changes in body composition with weight loss in obese subjects randomized to a laparoscopic adjustable gastric band surgical program or a medical program using a very‐low‐energy diet and orlistat. Research Methods and Procedures: Using body composition measurements by DXA, neutron activation for total body nitrogen, and whole body γ counting for total body potassium, we studied changes in fat mass, fat distribution, fat‐free mass, total bone mineral content, total body protein, and body cell mass at 6 (n = 61 paired) and 24 months (n = 53 paired) after randomization. Results: At 24 months, the surgical group had lost significantly more weight (surgical, 20.3 ± 6.5 kg; medical, 5.9 ± 8.0 kg). There was favorable fat‐free mass to fat mass loss ratios for both groups (surgical, 1:5.5; medical, 1:5.9). Changes in total body nitrogen or potassium were favorable in each group. A small reduction in mean bone mineral content occurred throughout the study but was not associated with extent of weight loss or treatment group. At 6 months, weight loss for both groups was similar (surgical, 14.1 ± 4.5 kg; medical, 13.3 ± 7.3 kg). The medical program subjects lost less fat‐free mass and skeletal muscle and had increased total body protein. The proportion of body fat to limb fat remained remarkably constant throughout the study. Discussion: Weight loss programs used in this study induced fat loss without significant deleterious effects on the components of fat‐free mass.  相似文献   

19.
Objective: Ghrelin is postulated to be an orexigenic signal that promotes weight regain after weight loss (WL). However, it is not known whether this putative effect of ghrelin is sustained after weight stabilization. The objective of this study was to investigate the relationship of plasma ghrelin concentrations to active WL and weight maintenance in obese subjects. Research Methods and Procedures: This study was a randomized clinical trial, with a 12‐month follow‐up period. Obese Mexican‐American women matched for age and BMI were randomized to a 12‐month WL program (n = 25) or no intervention (controls, n = 23). Interventions included diet, exercise, and orlistat. Body weight and fasting ghrelin, leptin, insulin, and glucose concentrations were measured at baseline and 6 and 12 months. Results: The WL group lost 8.5% of body weight after 6 months and maintained the new weight for the next 6 months. Ghrelin concentrations increased significantly at 6 months but returned to baseline at 12 months. Baseline ghrelin concentrations were directly related to the degree of WL achieved after 12 months. Controls experienced no change in BMI or ghrelin levels. There were no associations between plasma ghrelin and leptin or insulin concentrations. Discussion: Consistent with previous results, ghrelin rises in response to WL, perhaps as a counterregulatory mechanism. However, the present results indicate that ghrelin concentrations return to baseline with sustained weight maintenance, suggesting that its effects are unlikely to regulate long‐term energy balance. Baseline ghrelin concentrations are related to the degree of WL that can be achieved by active weight reduction.  相似文献   

20.
Objective: To assess bone mineral content (BMC) among obese adolescents who lose weight during a critical period for bone accretion. Methods and Procedures: Whole body, lumbar spine, lower, and upper limb BMC were measured in 62 obese adolescents who completed an intensive 12‐month weight loss trial. BMC was adjusted for height (z ‐scores) using data from a reference group of 66 adolescents (who were 18% overweight). Results: At baseline, the BMC of the obese group was higher than the reference group. During the 12‐month weight loss program, unadjusted BMC increased among the obese adolescents, despite successful weight loss. After adjustment for height, whole body BMC did not change significantly from baseline to 12 months (mean ± s.d.: 1.08 ± 0.67 to 1.06 ± 0.67, P = 0.7). Region‐specific BMC‐for‐height however decreased for the lower (1.07 ± 0.57 to 0.95 ± 0.59, P < 0.001) and upper (1.29 ± 0.56 to 1.18 ± 0.57, P = 0.01) limbs, but lumbar spine BMC‐for‐height increased (0.14 ± 1.06 to 0.40 ± 0.94, P < 0.001). These changes were largely and independently explained by changes in lean and fat mass. Discussion: This study confirms that obese adolescents have high BMC for height and suggests that, unlike adults, their BMC continues to increase during weight loss and remains higher than the BMC of a reference group. After adjustment for growth‐related changes, lower and upper limb BMC appears to decrease, while lumbar spine BMC appears to increase. These results suggest that to optimize the health benefits of weight loss among obese adolescents, their bone health should be better understood and addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号